प्रगति प्रतिवेदन Progress Report

Volume 2: Entomology & Plant Pathology

अखिल भारतीय समन्वित चावल सुधार परियोजना All India Co-ordinated Rice Improvement Project

2022

भाकृअनुप-भारतीय चावल अनुसंधान संस्थान भारतीय कृषि अनुसंधान परिषद

ICAR-Indian Institute of Rice Research

Indian Council of Agricultural Research Rajendranagar, Hyderabad - 500 030

PROGRESS REPORT 2022

Vol. 2

CROP PROTECTION

(ENTOMOLOGY AND PLANT PATHOLOGY)

All India Coordinated Research Project on Rice

Indian Institute of Rice Research (Indian Council of Agricultural Research) Rajendranagar, Hyderabad – 500 030, (Telangana)., India Correct citation: ICAR-Indian Institute of Rice Research, 2023
Progress Report, 2022, Vol.2, Crop Protection
(Entomology, Plant Pathology)
All India Coordinated Research Project on Rice
ICAR-Indian Institute of Rice Research,
Rajendranagar, Hyderabad – 500 030,
Telangana State, India

PREFACE

Rice is the most important food crop of our country and identifying solutions for issues faced in cultivation and production of the crop is key answer for national food security. Under the All India Coordinated Research Project on Rice (AICRPR), evaluation of varietal improvement, crop production and crop protection technologies across locations has been continuing to contribute towards strategies strengthening rice farmers' efforts towards sustainable rice production. About 400 scientists, belonging to ICAR - Indian Institute of Rice Research, 45 funded and more than hundred voluntary centres of State Agricultural Universities, Departments of Agriculture, ICAR Institutes and Private Undertakings work towards progress of rice research under the umbrella of AICRPR.

This volume reports the salient findings of experimental trials in Entomology and Pathology during 2022-2023. The scientists involved in AICRRP system conducted majority of the trials allotted showing their commitment to the programme. The major goal of Crop Protection programme of AICRIP is to develop broad based, environmental-friendly, cost effective and adoptable IPM technologies which can help in alleviating socio-economic constraints by providing gainful benefits for rice farmers in the country. Emphasis is on ecologically safe and cost optimizing IPM and IRM components such as host plant resistance, ecological engineering and biodiversity, utilization as well as need based application of safe chemicals and also identification of new pest and diseases in Rice ecosystem in India under the umbrella of AICRPR. Regular monitoring of pest occurrence at various locations across nation is undertaken to know changing pest scenario and to have timely management interventions. Efforts are underway to build decision support systems for assisting farmers in decision making.

I compliment the efforts of the entire staff of Entomology and Plant Pathology including Principal Investigators, Cooperating scientists, technical and supporting personnel for their contribution in bringing out this document containing useful and relevant information related to rice crop protection technologies across diverse ecosystem for increasing and stabilizing rice production in India.

(R. M. Sundaram)

a arule Let

2. ENTOMOLOGY TRIALS Kharif 2022

CONTENTS	PAGE
SUMMARY	i-viii
2.1 HOST PLANT RESISTANCE STUDIES	
Planthopper Screening Trial (PHS)	2.2
Gall Midge Screening Trial (GMS)	2.5
Leaf Folder Screening Trial (LFST)	2.6
Stem Borer Screening Trial (SBST)	2.9
Multiple Resistance Screening Trial (MRST)	2.10
National Screening Nurseries (NSN)	2.12
a. IIRR-National Screening Nurseries (IIRR-NSN)	
b. NRRI-National Screening Nurseries (NRRI-NSN)	
2.2 INSECT BIOTYPE STUDIES	
Gall Midge Biotype Trial (GMBT)	2.25
Planthopper Special Screening Trial (PHSS)	2.26
Gall Midge Population Monitoring Trial (GMPM)	2.30
Planthopper Population Monitoring Trial (PHPM)	2.31
2.3 CHEMICAL CONTROL STUDIES	
Evaluation of granular insecticides against gall midge (EIGM)	2.36
Insecticide-Botanicals Evaluation Trial (IBET)	2.48
2.4 OPTIMUM PEST CONTROL TRIAL (OPCT)	2.62
2.5 ECOLOGICAL STUDIES	
Influence of Establishment Methods on Pest Incidence (IEMP)	2.68
Cropping Systems Influence on Pest incidence (CSIP)	2.76
Evaluation of Pheromone Blends for Insect pests of rice (EPBI)	2.78
2.6 BIOCONTROL AND BIODIVERSITY STUDIES	
Evaluation of Entomopathogens against sucking pests of rice (EESP)	2.81
2.7 INTEGRATED PEST MANAGEMENT STUDIES	
Integrated Pest Management special Trial (IPMs)	2.91
2.8 ASSESSMENT OF INSECT POPULATIONS THROUGH LIGHT TRAP CATCHES	2.116

ENTOMOLOGY TRIALS Rabi 2021-22

SUMMARY	
2.1 HOST PLANT RESISTANCE STUDIES	
Stem Borer Screening Trial (SBST)	2.126
Multiple Resistance Screening Trial (MRST)	2.127
National Screening Nursery (Boro) (NSN-BORO)	2.127
2.2 CHEMICAL CONTROL STUDIES	
Insecticide-Botanicals Evaluation Trial (IBET)	2.129
2.3 BIOCONTROL AND BIODIVERSITY STUDIES	
Ecological engineering for pest management (EEPM)	2.133
2.4 INTEGRATED PEST MANAGEMENT STUDIES	
Integrated Pest Management special Trial (IPMs)	2.135

Kharif 2022

SUMMARY

All India Coordinated Entomology Programme was organized and conducted during *kharif* 2022 with seven major trials encompassing various aspects of rice Entomology involving 304 experiments (96.8%) that were conducted at 39 locations (ICAR-IIRR, 29 funded & 9 voluntary centres). Details of scientists involved in the program at headquarters, cooperating centres and the performance of centres is provided in Appendices I and II.

2.1. Host plant resistance studies

Host plant resistance studies at ICAR-IIRR comprised of six screening trials involving 1581 entries which included 1331 pre-breeding lines & varieties, 98 hybrids, 13 germplasm accessions and 136 checks. These entries were evaluated against 15 insect pests in 209 valid tests (47 greenhouse reactions +162 field reactions). The results of these reactions identified **92 entries** (5.81% of the tested) as promising against various insect pests. Of these promising materials, 14 entries (15.21%) are under retesting.

Planthopper screening trial (PHS): Evaluation of 176 entries against the two planthoppers BPH and WBPH in 12 greenhouse and 8 field tests at 16 locations indicated 16 entries (including 8 breeding lines, 1 local collection, 3 NILs viz., IR-187, IR-188 and IR-189 in the background of IR 24, two gene pyramided lines ISM 3 and ISMA 4 in the background of Improved Samba Mahsuri, two N22 mutant lines viz., MH 4906 and MH 663 and 3 three checks PTB 33, RP2068-18-3-5 and MO1 as promising in 6 to 13 tests. Two breeding lines viz., RP-GP-3000-179-3-9-1, WGL 1533 and one local collection IBT-BPH M 23 from IBT, PJTSAU performed better in the second year of retesting.

In **Gall midge screening trial (GMS)** evaluation of 110 entries bred specifically for gall midge resistance were evaluated in 8 field tests and one greenhouse reaction against 9 populations of gall midge which helped in identification of 12 entries as most promising with nil damage in 5-6 tests of the 9 valid tests. **Of these, IBTWGL 3, RP 6614-102-11-3-3-1-1-1(FBL 19101), GM 5 (IBT), IBTWGL 2, IBTWGL 21** with known gall midge resistance genes in different varietal backgrounds were observed to be **promising** under retesting. Another 24 entries were promising in 4 tests.

Field evaluation of 25 entries replicated thrice at 18 locations in **Leaf Folder Screening Trial (LFST)** during Kharif 2022 revealed that 22 entries were promising in 2-6 tests out of 14 valid field tests. In the first year of testing, **RP5564 PTB 1-4-2 was found promising** in 6 of the 14 valid tests while four entries, viz., BPT **3182**, **RP5564 PTB 1-4-1-2**, **RP5564 PTB 2-4-1-5**, and

RP5564 PTB 1-4-1-1 were promising in 5 out of 14 valid field tests. **BPT 3068, RP5564 PTB 1-4-1** and **BPT 3085** were found promising in 4 valid field tests out of 14 while seven entries were promising in 3 valid field tests and the rest of the entries in 2 out of 14 valid field tests.

Stem borer screening trial (SBST) comprised of 55 entries which were evaluated in 16 valid field tests for dead heart and white ear damage identified 10 entries viz., **BK 49-76**, **RP 6505-40**, **RP5564 PTB 2-4-2-1-2**, **RP5564 PTB 1-4-2**, **RP5564 PTB 2-4-2-1-1**, **BK 64-116**, **RP-6112-SM-92-R-293-2-2-4-4(a)**, **RP5564 PTB 1-1-1-2**, **RP2068-18-3-5** and **W1263** as **promising** in 4 to 5 of the 16 tests in terms of low dead hearts ($\leq 5\%$ DH) and white ear damage $\leq 5\%$ WE. These entries were also promising in 1 to 5 tests of the 8 valid tests with higher grain yield (≥ 15.0 g/hill) suggesting that recovery resistance and tolerance could be the mechanism in these entries as they have good grain yield despite damage. BK 49-76, BK 64-116 and RP 2068-18-3-5 were under retesting.

In Multiple resistance screening trial (MRST) trial, 40 entries were evaluated in 6 greenhouse and 45 field tests against 7 insect pests which helped in identification of 7 entries and 3 checks as promising in 5-8 tests against 2-4 insect pests with a PPR of 2.8-6.7. Of these, 4 entries *viz.*, PTB21, NND2, WGL1062 and RNR37971 were in first year of testing; three entries *viz.*, RP 6461-248-1, RP Bio 4918-230 and CRCPT 8 identified as promising were under second year of retesting. The check lines W1263, RP 2068-18-3-5 and PTB 33 were promising in 6-8 tests against 2-3 pests with a PPR of 3.9 -6.7.

IIRR-National Screening Nurseries (NSN) comprised of 4 trials *viz.*, National Screening Nursery 1(NSN1), National Screening Nursery 2 (NSN2), National Screening Nursery–Hills (NSN hills) and National Hybrid Screening Nursery (NHSN).

IIRR-NSN1 constituted with 348 entries (326 AVT entries along with 10 insect checks and 12 disease checks) and evaluated at 18 locations against 10 insect pests identified 12 entries *viz.*, IET nos. **29749**, **29743**, **29935**, **30233**, **30261** as promising in 5 tests; **30097**, **30078**, **29235**, **29238**, **29875**, **29203**, **30106** in 4 tests of the 32 valid tests against 2 pests. PTB 33 was promising in 7 tests; Aganni and W1263 in 4 tests each.

IIRR-NSN 2 trial comprised of 581 entries (557 entries from IVT trials, 10 insect and 14 disease checks) and was evaluated at 17 locations against 8 insect pests. Evaluation of NSN 2 entries in 26 valid tests (8 greenhouse and 18 field tests) against 5 insect pests identified 9 entries as promising in 5-8 tests. **IET no 30838** was promising in 6 tests; **IET nos. 30831, 30845, 30851, 30852, 30966, 30794** were promising in 5 tests. **RP 2068-18-3-5** and **PTB-33** were promising in 8 and 6 tests, respectively of the 26 valid tests.

IIRR NSN-Hills trial consisting of 124 entries (100 hill entries+10 insect check lines and 14 disease checks) was evaluated at 7 locations in 15 valid tests (6 greenhouse and 9 valid field tests) against 6 insect pests. Three test entries viz., **Vivekdhan 86 (NC), IET Nos 28887, 30518** along with check lines Nidhi, HR12 and RP 2068-18-3-5 were promising in 3 tests. Aganni and PTB33 were promising in 5 and 4 tests respectively of the 15 valid tests.

In **IIRR-NHSN** trial, 98 hybrids along with 24 checks were evaluated in 7 greenhouse and 11 field tests against 4 insect pests at 12 locations in 18 valid tests. The results identified **IET Nos. 30602, 30624 30594** and **RP 2068-18-3-5** as promising in 4 of the 18 tests. PTB33 was promising in 6 valid tests; IET Nos. **30609, 30620** and **30597** were promising in 3 tests. NRRI screening nursery comprised of NRRI-NSN1 and NRRI- NSN2.

NRRI-NSN1: Evaluation of 51 entries in NSN-1 in 4 greenhouse and 13 field tests against 7 insect pests in 17 valid tests helped in identification of 4 entries *viz.*, **IET Nos 31288, 29032, and CR Dhan 506** as promising in 4-5 tests against 2-3 insect pest damages.

NRRI- NSN2: Evaluation of 166 entries in NSN-2 in 4 greenhouse and 8 field tests against 5 insect pests in 12 valid tests helped in identification of 3 entries *viz.*, **IET Nos 31232, 31221,31283** as promising in 2- 4 tests against 1-2 insect pest damages

INSECT BIOTYPE STUDIES comprising of four trials 1) Gall midge biotype monitoring trial (GMBT), 2) Planthopper special screening trial (PHSS) 3) Gall midge population monitoring (GMPM) and 4) Planthopper population monitoring trial (PHPM) were conducted to monitor the virulence pattern of gall midge and brown planthopper populations.

In **Gall midge biotype monitoring trial (GMBT)** 19 gene differentials along with TN1 were evaluated in one greenhouse and 12 field tests at 11 locations which identified **Aganni (Gm8)**, **INRC 3021 (Gm8)** and **INRC17470** as promising in 9 -11 of the 12 valid tests. **INRC15888** and **RP5925-24** were promising in 7 tests. W1263 (*Gm1*) was promising in 6 of the 12 valid tests. The results suggest that donors with *Gm8* and *Gm1* genes confer resistance to gall midge across the test locations.

Planthopper Special Screening Trial (PHSS) Among the 17 gene differentials evaluated, two gene differentials viz., PTB 33 (with bph2+Bph3+Bph32+unknown factors) and RP 2068- 18-3-5 (with Bph33t gene) were promising in 12 and 13 tests respectively tested at 12 locations. Swarnalatha with Bph6 gene performed better at 4 locations. Six gene differentials viz.,

T12 (with *bph7* gene), **Rathu Heenati** (with *Bph3+Bph17* genes), **ASD 7** (with *bph2* gene), Babawee (with *bph 4* gene), **IR 36** (with *bph2* gene) and **IR 64** (with *Bph1+* gene) showed low damage at two locations each. Two gene differentials *viz.*, **Chinasaba** (with bph8 gene) and **Milyang 63** (with unknown genetics) performed better at one location each.

Studies on virulence composition of gall midge populations in **Gall Midge Population Monitoring (GMPM)** trial conducted at six locations across four southern states in India through single female progeny testing suggest that Aganni (Gm8) holds promise at Jagtial, Warangal and Ragolu. Low virulence against W1263 (Gm1) was observed at Gangavathi, Pattambi and Warangal. Akshayadhan (with Gm4 + Gm8) was promising at Jagtial and Warangal. However, a close monitoring of the virulence pattern in endemic areas is important.

In Planthopper Population Monitoring Trial (PHPM), the virulence monitoring studies of brown planthopper populations using five gene differentials revealed that at Ludhiana, brown planthopper population was more virulent than the other five BPH populations viz., IIRR-Rajendranagar, Coimbatore, New Delhi and Pantnagar in terms of virulent females which laid eggs, egg period, number of nymphs hatched, nymphqal survival, and highest percentage of brachypterous adults. At all the locations, all the females were virulent except at Coimbatore.

Evaluation of granular insecticides for the management of gall midge (EIGM)

For gall midge, seed treatment with thiamethoxam followed by application of fipronil 3% GR at 20-25 DAT in the main field was most effective with significantly lower SS (8.27%) as compared to other treatments

In case of yellow stem borer, seed treatment with thiamethoxam followed by chlorantraniliprole 0.4 GR in the main field was most effective in preventing DH formation with 62.18 per reduction over control. Whereas, application of fipronil granules in nursery + chlorantraniliprole granules in main field was significantly superior in preventing white ear formation with 51.67 % reduction over control.

With respect to yield, treatment effects were significant and in all the treatments higher yield was recorded as compared to untreated control (3214.5 kg/ha). Application of fipronil granules in nursery followed by chlorantraniliprole granules in main field was the best treatment with significantly higher yield (4496.4 kg/ha) as compared to remaining treatments. Seed treatment with thiamethoxam followed by fipronil granules in main field (4468.2 kg/ha) and seed treatment with thiamethoxam followed by chlorantraniliprole granules in main field

(4340.8 kg/ha) were second and third best regarding yield and were at par with application of Fipronil 0.3 GR in the nursery + Chlorantraniliprole 0.4 GR in the main field. The best treatment resulted in 39.9% yield advantage over the untreated control.

Insecticide Botanicals Evaluation Trial (IBET) was carried out at 25 locations across the country to evaluate performance of various treatments having combinations of commercially available neem formulation, effective plant oils along with recommended insecticides against major insect pests of rice and consequent impact on natural enemies and grain yield during kharif, 2022. Based on the performance of the various treatment combinations in controlling the pest damage at various locations, all insecticides module was found to be superior in reducing stem borer damage at both vegetative and reproductive phases compared to other insecticide-botanical modules. Among combinations, lowest silver shoot damage was recorded in all insecticide treatment which was on par with other treatments. Combination of Neemazal, neem oil and triflumezopyrim treatment was found to effective against BPH. Against WBPH and GLH all insecticides combination was found to be the most effective treatment. Against leaf folder also insecticides module was effective in reducing leaf damage. All insecticide combination treatments were found moderately effective in reducing damage by whorl maggot, gundhibug and grasshopper pests. There was no significant difference in natural enemy (mirid, spider and coccinellid) populations among treatments, signifying that both insecticides and botanicals are safe to beneficial organisms. Among various treatments, all insecticides treatment recorded highest mean yield of 4991.0 kg/ha followed by treatment consisting of neemazal, neem oil and triflumezopyrim giving yield of 4554.2 kg/ha.

Optimum Pest Control Trial (OPCT) was initiated in kharif 2022 to evaluate the performance of the identified multiple pest resistant rice cultures under protected and unprotected conditions against the pest damages in a location. In this trial, 9 resistant cultures along with TN1 were evaluated at 9 locations. Silver shoot damage by gall midge was reported across 4 locations. Observations revealed that across locations the **damage** was **significantly lower** (1.7-3.03%SS) in **W1263** (*Gm1*), **CUL M9**, **Suraksha** (*Gm11*), **Akshyadhan PYL, RP2068- 18- 3-5** (*gm3*) as compared to other varieties (F val, 8.901 at 9 df P =0) where the damage ranged from 7.7-11.6% SS. Dead heart damage was reported from 7 locations and it was significantly lower in insecticide treatments at 4 locations as compared to unprotected control. **CUL M9**, **RP2068**, **RP5587-273-1-B-B-B** and **Suraksha recorded lower dead heart damage** across locations though statistically not significant (F val 0.426, P = 0.916). White ear damage was significantly lower in protected treatments at 3 locations of the 8 locations recorded. Though CulM9 had the

least damage followed by KMR3, RP 2068-18-3-5, CR Dhan317, Akshaydhan PYL, W 1263 and RP5587-273-1-B-B-B, the reaction was statistically not significant (F val 0.098, P 1.0 at 9 df). Analysis of grain yield from 5 locations identified CR Dhan 317, KMR 3, RP2068-18-3-5, with higher yield (4 -4.5/ha) though statistically not significant (F val 1.563, P val 0.144).

Influence of crop establishment methods (IEMP), a collaborative trial with Agronomy, was conducted at 12 locations during Kharif 2022. Across the locations, the incidence of dead hearts caused by stem borer and leaf folder was significantly high in semi-dry rice followed by puddled direct-seeded rice while white ears were high in aerobic rice. Gall midge incidence was significantly high in puddled direct-seeded rice followed by the normal transplanting method. The incidence of whorl maggot, caseworm, and BPH was also significantly high in puddled direct-seeded rice. Overall, the incidence of insect pests was significantly high in puddled direct-seeded rice followed by the normal transplanting method while the incidence was low in direct-seeded rice, semi-dry rice, mechanical transplanting, and aerobic rice.

Cropping system influence on insect pest incidence (CSIP), a collaborative trial with Agronomy was conducted at three locations, Karjat, Titabar and Ghaghraghat during Kharif 2022. Low incidence of stem borer, leaf folder, whorl maggot, and case worm was observed in different main plots of crop establishment methods and sub-plots of straw incorporation techniques at all the locations.

Evaluation of pheromone blends for insect pests of rice (EPBI) trial was conducted at 9 locations during Kharif 2022. The field trial was constituted with normal and slow-release formulations of yellow stem borer, rice leaf folder, and the multispecies blend of both RLF and YSB pheromone compounds. The slow-release formulations recorded maximum catches compared to the normal formulations in the case of yellow stem borer and leaf folder across locations. The peak mean catches of leaf folder per week were maximum at Ludhiana (89) followed by IIRR (66), while yellow stem borer, catches were maximum at Ludhiana (69). Similarly, adult catches were high in the slow-release formulation of multi-species lure at Ludhiana (45/week) with more stem borer species than leaf folders.

Evaluation of entomopathogens against sucking pests of rice (EESP) was taken up in nine locations to test the effectiveness of entomopathogens *Lecanicillium saksenae*, *Beauveria bassiana* and *Metarhizium anisopliae* against sucking pests especially the ear head bug in rice. The results indicated *L. saksenae* to be the most effective of the three pathogens tested in seven locations with no detrimental impact on natural enemies.

Integrated Pest Management special (IPMs) trial was conducted with zonewise practices at 21 locations in 42 farmers' fields during Kharif 2022. In Zone I (Hilly areas, dead hearts caused by black beetle was predominant in both IPM (24.2%) and FP plots (31.8%) followed by leaf folder in FP plots (16.9%). In Zone II (Northern areas), the incidence of stem borer, leaf folder, BPH, and WBPH was observed. Leaf folder incidence (> 20 % LFDL) was higher in FP plots at Kaul. In Zone III (Eastern areas) and Zone IV (North Eastern areas), stem borer, gall midge, leaf folder, whorl maggot, and BPH were observed but the incidence was low. In Zone V (Central areas), a high incidence of gall midge was observed in all the FP plots (15.3 - 37.2% SS) compared to IPM plots (9.9- 11.3% SS) at Jagdalpur. Thrips damage was also high in FP plots at Jagdalpur (8.9-14.3% THDL) as against IPM plots (8.9-14.3% THDL). However, the incidence of stem borer, leaf folder, whorl maggot, and BPH was low. In Zone VI (Western areas), the incidence of stem borer, leaf folder, and WBPH was low in both IPM and FP plots across locations. In Zone VII (Southern areas), stem borer incidence was high in FP plots at Aduthurai (35.3-46.1% DH) compared to IPM plots (5.4 -15.6% DH). Similarly, gall midge and leaf folder incidence were high in FP plots and low in IPM plots in all three farmers' fields at Aduthurai.

IPM implemented plots resulted in mean grain yield advantage of 51.0, 25.0, 21.4, 10.9, 45.0 and 11.0% in Zone-I, III, IV, V, VI and VII, respectively over the farmer practices. In IPM adopted fields, the mean weed population reduction over the Zones ranged from 22.5 % in Zone-V (Central areas) to 66.7 % in Zone-VII at 30 DAT; and from 27.6 % in Zone-I (Hilly areas) to 56.1 % in Zone-I at 60 DAT. The dry weed biomass reported from 13 locations showed that, both at 30 and 60 DAT, biomass was reduced significantly by 15.7 % in Zone-V (Central areas) to 69.7% in Zone-VI (Western areas); 18.2 % in Zone-V (Central areas) to 54.1% in Zone-VI (Western areas).

Adoption of IPM practices effectively reduced the disease progression of leaf blast, neck blast, bacterial blight, sheath blight, and brown spot in Zone II (Northern areas), leaf blast, neck blast, bacterial blight and sheath blight in Zone III (Eastern areas). There was significant reduction in the disease development of leaf blast, neck blast and sheath blight in Zone V (central areas), sheath rot and glume discolouration in Zone VI (Western areas), bacterial blight, false smut and leaf blast in Zone VII (Southern areas) due to the adoption of IPM practices.

Grain yields were significantly high in IPM-implemented plots resulting in high gross returns. Overall, BC ratios of IPM plots were superior to that of FP mainly due to better yields, lower input costs, and better returns.

Assessment of insect populations through light trap data revealed that yellow stem borer, leaf folder, and planthoppers continued to be the most important pests in terms of numbers as well as spread across the

locations. Gall midge continues to be an endemic pest. However, case worm, and gundhi bug showed an increase in the spread and intensity of incidence posing concerns for future. Patterns in seasonal incidence and population build up based on light trap data indicates that the key pests are reaching their peak levels in the months of October and November in the kharif season. Therefore, strategies are to be timed accordingly for the effective management of insect pests in rice.

Kharif 2022

Pest Survey Report-2022

Rice dwarfing symptoms were prevalent in parts of Kathua district, Jammu and Kashmir in rice transplanted during the first fortnight of June. Roots of majority of the dwarfed rice plants harboured low to moderate population of rice-root nematode, *Hirschmanniella* spp. During reproductive stage grain discolouration was prominent. In Panchmahal and Mahisagar Districts of Gujarat, yellow stem borer, leaf folder and whitebacked planthopper showed moderate infestation.

Leaf mite caused 40-50 per cent leaf damage in parts of Sembanar Koil Block, Myiladuthurai District, Tamil Nadu in the month of June. Due to cloudy and rainy weather conditions in the month of December, gall midge gained severity (12-65 %) in Thiruvidaimarthur and Myiladuthurai areas. Whereas, in Kumbakonam area severe damage was inflicted by leaf folder. In parts of Mayiladuthurai, Nagapattinam, and Tanjavur Districts, brown planthopper caused heavy damage. In Palakkad and Pattambi Districts of Kerala, armyworm and thrips caused 20-30 per cent damage at vegetative stage. In Alathur, Palakkad, Chittur, Pattambi and Kuzhalmannam regions brown planthopper, leaf mites and leaf folder were prevalent. In certain parts, brown planthopper inflicted severe damage. At seedling stage thrips infested severely (>75% leaf damage) in Kuttanad Taluk, Alappuzha District. In Udupi and Dakshina Kannada Districts of Karnataka, caseworm infestation was severe (56% leaf damage). Case worm and brown planthopper caused extensive damage in parts of Malavalli Taluk, Mandya District. Hispa incidence was moderate in Rayaparthy mandal of Warangal District, Telanagana. In Hasanparthy area, Telangana brown planthopper occurred in moderate level

2.1 HOST PLANT RESISTANCE STUDIES

Host plant resistance trials were conducted with the main objective of identifying new sources of resistance to major insect pests, evaluation of performance of breeding lines and also characterization of insect pest populations from various hot spots. To achieve these objectives, six trials viz., i) Planthopper screening trial (PHS) ii) Gall midge screening trial (GMS), iii) Leaf folder screening trial (LFST), iv) Stem borer screening trial (SBST) v) Multiple resistance screening trial (MRST) and vi) National screening nurseries (NSN) were constituted and conducted. The results are summarized and discussed trial wise. In all, 1581 entries were evaluated at 39 locations against 14 pests and 92 (5.81%) entries were identified as promising. The reaction of the entries to insect pests in each trial are tabulated in a separate volume "Screening Nurseries: Vol. II – Insect Pests & Diseases". The results are discussed trial wise:

i) Planthopper Screening Trial (PHS)

The planthopper screening trial was constituted with 176 entries comprising of 10 breeding lines developed at RRU, ANGRAU, Bapatla; 15 breeding lines developed at APRRI, ANGRAU, Maruteru, 10 breeding lines developed at TNAU, Coimbatore; 3 breeding lines and 12 germplasm lines from RARS, PJTSAU, Jagtial; 12 breeding lines developed at Kunaram, PJTSAU; 2 breeding lines developed at ARI, PJTSAU; Rajendranagar, 1 breeding line developed at RARS, PJTSAU, Warangal; 1 local collection from IBT, PJTSAU, Rajendranagar; 16 NILs in the genetic background of IR 24, 3 mutant lines derived from BPT 5204, 7 mutant lines derived from N22, 4 breeding lines, 8 recombinant inbred lines, 51 gene pyramided lines of improved Samba Mahsuri and Improved Samba Mahsuri recurring parent developed at IIRR, Hyderabad along with three resistant checks PTB 33 (BPH), RP 2068-18-3-5 (BPH) and MO1 (WBPH) as well as one susceptible check TN1. Of these, eight entries were under retesting. The entries were evaluated at 16 locations in 20 tests against brown planthopper (BPH), whitebacked planthopper (WBPH) and mixed populations of planthoppers under both field and greenhouse conditions. Evaluation of entries in 10 greenhouse and 1 field test against brown planthopper, 2 greenhouse and 1 field test against whitebacked planthopper and 6 field tests against mixed populations of planthoppers revealed that 8 breeding lines viz., GPSS-RIL 86, RP-GP-3000-179-3-9-1*, BPT 3194, BPT 3217, BPT 3199, KNM 14382, RNR 31643, WGL 1533*, one local collection IBT-BPH M 23* from IBT, PJTSAU, 3 NILs viz., IR-187, IR-188 and IR-189 in the background of IR 24, two gene pyramided lines ISM 3 and ISMA 4 in the background of Improved Samba Mahsuri, two N22 mutant lines viz., MH 4906 and MH 663 as promising in 6-11 tests (Table 1). Two breeding lines viz., RP-GP-3000-179-3-9-1, WGL 1533 and one local collection IBT-BPH M 23 from IBT, PJTSAU performed better in the second year of retesting. The susceptible check, TN1 recorded damage score in the range of 5.6 to 9.0 in these valid tests. The universal checks viz., PTB 33 and MO1 performed well in 13 and 6 tests respectively. The breeding line, RP 2068-18-3-5 carrying BPH resistance gene Bph33t and identified as a donor check line for BPH performed better in 13 tests. Mixed populations of brown planthopper and whitebacked planthopper were present at Aduthurai, Gangavathi, Jagitial, Maruteru, Pantnagar, Raipur, Sakoli and Warangal. Data on BPH and WBPH populations during the field evaluation at Gangavathi (WBPH: BPH in 1.0:0.69 ratio) revealed predominance of WBPH over BPH. At Aduthurai, in the early stages, brown planthopper population was more compared to whitebacked planthopper (6BPH: 1WBPH) but gradually WBPH population increased (1BPH:1WBPH). At Nawagam, only WBPH was present. BPH was predominant throughout the crop season at Pantnagar (BPH is 6-10 times more than WBPH). At Raipur, BPH was in more numbers throughout the crop season (BPH is 3 to 24 times more than WBPH). At Rajendranagar, only BPH population was present. At Sakoli, brown planthopper dominated (2-5 times more) whitebacked planthopper throughout the crop season. At Warangal, brown planthopper was present in maximum numbers (16-24 times more) compared to whitebacked planthopper.

Evaluation of 176 entries against the two planthoppers BPH and WBPH in 12 greenhouse and 8 field tests at 16 locations indicated 16 entries (including 8 breeding lines, 1 local collection, 3 NILs viz., IR-187, IR-188 and IR-189 in the background of IR 24, two gene pyramided lines ISM 3 and ISMA 4 in the background of Improved Samba Mahsuri, two N22 mutant lines viz., MH 4906 and MH 663 and 3 three checks PTB 33, RP2068-18-3-5 and MO1 as promising in 6 to 13 tests. Two breeding lines viz., RP-GP-3000-179-3-9-1, WGL 1533 and one local collection IBT-BPH M 23 from IBT, PJTSAU performed better in the second yea of retesting.

Table 2.1.1 Performance of the most promising entries against planthoppers in PHS kharif 2022

Hand							Brro	Brrown Planthopper	hopper					M g	Whitebacked planthopper	pe Jé			Planthoppers	ers				2	of Drog	204 50101	٥	
1. The problem of the problem o	IIRR	-	AD	_	CBT	СТС	LDN	MND	NDL	PNT		MGL			СВТ	IWG	GGV					SKL		2		ear fallici	3	
5 5 5 5 5 5 5 5 5 5	Designation					Ģ	eenhou	se Reacti	ion				Æ	Gr.l reacti	h ion	FR			Field react	tion			ВРН		WBP	<u> </u>	Н	Total
4 5 6 7 7 7 7 7 8 9 7							Damaç	je Score				-	No/10h	DS		No/10h	DS	No/ 10h						Field (1)		Field (1)	Field (6)	(20)
6.2 7.0 3.0 7. 8.3 8.0 4.8 7.0 4.1 6.8 3.6 3.6 4.8 7.0 4.1 6.0 7.0 7.0 4.0 7.0 4.0 6.0 13.1 6.0 7.0 7.0 4.0 7.0 4.0 7.0 4.0 7.0 4.0 7.0 4.0 7.0 4.0 7.0 4.0 7.0 <td>GPSS-RIL 5.0</td> <td>2.0</td> <td></td> <td>2</td> <td>5.0</td> <td>5.0</td> <td>3.0</td> <td>е</td> <td>7.9</td> <td>9.0</td> <td>6.0</td> <td>7.5</td> <td>7</td> <td>7.3</td> <td>0.6</td> <td>64</td> <td>2</td> <td>293</td> <td></td> <td></td> <td>901</td> <td>37</td> <td>9</td> <td></td> <td></td> <td></td> <td>2</td> <td>8</td>	GPSS-RIL 5.0	2.0		2	5.0	5.0	3.0	е	7.9	9.0	6.0	7.5	7	7.3	0.6	64	2	293			901	37	9				2	8
52 60 65 65 67 68 67<	RP-GP-3000- 179-3-9-1*	2.0		5	6.2	7.0	3.0	7	8.3	9.8	4.8	7.0	7	4.1	8.9	35	က	321			148	39	က		-	-	-	9
50 60<	IBT- BPHM23* 4.0	4.0		9	5.2	9.0	3.0	3	6.5	6.3	NG	4.8	6	3.4	6.5	131	6	262			148	46	4		_		-	9
52 30 76 64 30 66 34 30 66 34 66 34 66 34 66 34 66 34 67 30 66 34 67 30 67 30 30 30 30 66 34 67 31 47 67 31 67 32 67 32 67 32 68 32 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49<	IR-187 5.6	5.6		3	5.0	5.0	8.5	2	7.4	8.0	1.5	4.8	7	4.4	2.0	79	3	596			001	36	9		2		2	10
84 50 30 61<	IR-188 4.5	4.5		3	5.2	3.0	9.7	5	7.4	4.4	1.0	8.8	5	4.0	0.6	99	3	330			99	34	9	1	1		3	11
7 50 60 2.5 9 7.7 9 8.3 67 4.3 5 7.3 6 7.2 4.1 NG 8.7 4.6 8.0 1.3 1.0 7 4.0 8.0 1.3 1.3 1.3 1.0 9 7.7 4.1 NG 8.7 4.0 8.0 1.0 7 4.0 8.0 1.0 8.0 1.7 4.1 NG 8.7 4.4 6.2 6.0 9 7.0 1.0 9 7 4.0 8.0 1.0 8.0 1.1 9 4.4 6.2 6.0 9 7 4.0 8.0 1.0 8 7 4.0 8.0 9 7 4.0 8 7 4.0 8 9 9 7 4.0 8 9 9 7 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9	IR-189 5.4	5.4		6	8.4	5.0	3.0	2	7.2	5.2	1.2	8.3	2	0.6	7.1	89	2	337			82	31	4	_			3	8
5 57 90 80 77 4,6 86 133 9 78 170 57 41 NG 87 44 62 65 9 77 162 9 77 162 9 44 62 65 9 301 9 77 162 9 44 62 65 9 301 9 77 162 9 44 62 65 9 301 9 77 162 9 4 9 77 163 9 77 162 9 77 17 163 9 77 163 9 77 163 9 77 163 8 77 164 8 77 164 8 77 163 8 77 164 8 77 164 8 77 164 8 77 164 8 77 164 8 77 164 8 77 164	ISM-3 0.9	0.9		7	5.0	5.0	2.5	3	9.0	5.2	1.3	7.7	6	8.3	8.7	143	2	333			130	27	9				2	80
7 38 6.0 8.0 9.0 7.3 6.0 8.0 9.0 7.0 6.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 8.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 9.0 7.0 9.0 7.0 9.0	MH4906 3.6	3.6		6	2.2	9.0	8.0	6	7.7	4.1	NG	8.7	7	4.6	9.8	133	3	163			021	2	2		—		3	9
3 4 5 6 4 6 4 6 7 43 7 23 7 7 88 31 6 7 6 7 7 7 7 7 104 25 7 104 25 7 104 25 7 104 25 7 104 25 7 104 25 7 104 25 7 104 25 7 104 25 7 104 25 7 10<	MH663 3.2	3.2		7	3.8	5.0	8.0	6	7.3	9.6	NG	8.7	6	4.4	6.2	65	6	301			162	6	4				2	9
7 4.8 5.0 8.0 1.8 4.5 6.8 37 1 361 5 77 104 22 7 11 329 9 77 104 22 7 1 329 9 82 7 1 3 1 4 5 1 4 5 1 4 5 6 8 1 4 1 4 1 329 9 8 1 4 1 1 1 2 1 8 1 4 1 4 1 3 6 2 2 6 8 1 4 1 4 3 6 7 4 1 3 2 1 4 4 3 6 7 4 1 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 9 <	ISMA-13 4.7	, 4		3	7.0	3.0	2.8	3	8.0	9.0	1.4	9.0	7	8.5	8.7	43	7	236			88	31	9				3	6
8 5.0 6.5 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0	BPT 3194 1.8	1.8	3	7	4.8	2.0	8.0	5	2.0	8.0	1.8	4.5	5	3.4	8.2	37	-	361			104	22	7	1	-	1	2	12
5 1.8 3.0 8.3 7 4.1 3.0 8.3 7 4.1 3.0 8.3 7 4.1 3.0 8.0 7 9.0 6.0 127 3.0 6.0 127 3.0 6.0 127 3.0 6.0 127 3.0 6.0 127 3.0 6.0 140 34 41 6.0 7 6.0 6.0 127 3.0 100 140 34 41 6.0 7 6.0 6.0 127 3.0 6.0 100 140 34 41 6.0 7 6.0 6.0 127 3.0 6.0 120 120 100	BPT 3217 6.5	6.5		8	2.0	9.0	5.5	5	7.5	5.2	2.2	9.0	7	5.6	8.9	31	-	329				NG	3		-	1	1	9
8 8 6 6 7 9 6 7 9 6 7 9 6 12 9 10 14 9 4 6 7 6 6 12 12 10 14 34 4 7 6 3 12 16 10 14 4 4 7 6 3 6 6 7 6 3 16 6 12 4 15 4 4 7 6 3 16 6 16 17 6 3 16 16 16 16 17 16 16 17 16 16 17 16 16 17 17 16 16 17 16 17 16 17 16 17 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18	BPT 3199 2.8	2.8	3	5	1.8	3.0	8.3	2	2.0	9.8	1.3	8.3	7	4.1	3.0	83	2	280				NG	7		2		0	6
5 3.0 8.0 8.0 4.0 6.4 4.3 3.0 7 6.3 NG 63 3 286 9 96 120 120 140 NG 120 104 NG 120 <th< td=""><td>KNM 14382 4.</td><td>4</td><td>_</td><td>8</td><td>9.8</td><td>9.0</td><td>5.5</td><td>2</td><td>2.8</td><td>5.5</td><td>3.0</td><td>6.7</td><td>7</td><td>0.6</td><td>2.0</td><td>127</td><td>3</td><td>328</td><td></td><td></td><td>140</td><td>34</td><td>4</td><td></td><td>_</td><td></td><td>1</td><td>9</td></th<>	KNM 14382 4.	4	_	8	9.8	9.0	5.5	2	2.8	5.5	3.0	6.7	7	0.6	2.0	127	3	328			140	34	4		_		1	9
3 3 3 4 8 7 6 8 7 6 9 1 104 NG 120 12 6 12 6 12 14 16 16 12 16	RNR 31643 4.:	4	2	5	3.0	9.0	8.0	6	4.6	6.4	4.3	3.0	7	6.3	NG	63	3	286			128	41	5				1	9
5 6 NG 7.5 6 7.5 6 7.5 6 7.5 <		2.	2	3	3.0	9.0	8.3	1	1.6	7.5	1.2	8.9	7	2.0	NG	39	1	104			981	43	9	0	1	1	2	10
7 5.1 7.0 3.0 5.5 5.0	RP2068-18- 2.	2	0	2	5.0	NG	2.5	က	4.8	0.9	DN G	7.5	22	5.4	4.2	39	—	195			102	44	9	_	-	-	4	13
7 4.0 9.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 5.0	MO1 5.	5.	4	7	5.1	7.0	3.0	2	5.7	9.0	5.3	9.8	6	3.0	6.9	89	3	165			134	20	2		-		3	9
5 5 5 5 5 5 5 5 5 5 5 5 6 40 3 250 5 75 100 24 18 33 17 64 16 13 30 6 16 33 10 24 58 28 17 31 24	PTB33 1.7	1.7	7	7	4.0	9.0	4.0	3	1.0	3.5	2.0	3.1	5	4.0	3.0	45	1	130			164	28	8	1	2		2	13
24 18 33 17 64 16 13 30 6 16 33 10 24 58 28 17 31 24	Promising level	4,		5	2	5	5	2	5	2	3	5	5	5	2	40	3	250			001	20						
	No. of promising entries 1	_	9	24	18	33	17	64	16	13	30	9	16	33	10	24	28	28			24	17						

ii) Gall Midge Screening Trial (GMS)

The objective of this trial was to evaluate the performance of the donors and breeding lines developed from known sources of gall midge resistance against various populations of gall midge. The trial was constituted with 110 entries (95 entries comprising of breeding lines, 3 varieties and 12 insect checks). Of these 28 entries were under retesting. The nominations included breeding lines that were developed from 34 crosses bred at 8 centres, *viz.*, *ICAR*- IIRR; IBT PJTSAU; RARS Jagtial; ARS Kunaram; RARS Warangal; RRC Rajendranagar and RARS Pattambi where gall midge is an endemic pest. Of these breeding lines, 41 lines were already identified as marker positive for various gall midge resistance genes like *gm3*, *Gm4*, *Gm8*. The entries were evaluated at 12 locations across the country against the prevailing gall midge populations. The reaction of the entries to various populations of gall midge from different locations in 9 valid tests is discussed as under:

Twenty entries along with the check varieties Kavya, Aganni and W1263 recorded nil plant damage at **IIRR** (greenhouse reaction), **Jagdalpur and Chiplima** (field reaction).

Field reaction at **Ambikapur** helped in identification of 15 entries *viz.*, RP6290-22-59 (RMS-22-16), RP6290-22-71(RMS-22-22), RP6290-22-24 (RMS-22-30), GP 91, KNM 14282, KNM 14283, KNM 14382, RNR 35112, RNR 35123, WGL-1119, WGL 1782, RP6504-46, RP6505-30, RP6505-32, RP6505-89 with nil damage along with the resistant checks Kavya and W1263.

At **Jagtial**, field screening had identified 47 entries with nil damage along with the resistant check Aganni.

At **Maruteru**, 29 entries had nil damage. The check variety Kavya recorded nil damage and W1263 had 10 % plant damage.

KNM 11575, KNM 11579, JGL 38071, KNM 12392, APKS 82-75, GP 91, WGL 1512 and Kavya recorded nil damage in field screening at **Pattambi**.

RP 6614-102-11-3-3-1-1-1(FBL 19101), GM 4 (IBT), PTB18, PTB21, RP6290-22-72 (RMS-22-23), RP6290-22-12 (RMS-22-27), WGL-1119 and WGL 1789 recorded nil damage in field reaction at **Ranchi**, Jharkhand.

JGL 38071, WGL 1624, GM 5 (IBT), IBTWGL 2, IBTWGL 3, IBT WGL 31, RP 5923, PTB 10, Aganni, RP6290-22-11 (RMS-22-26), RP6503-3 and Aganni recorded nil damage at **Warangal** in the field evaluation.

The results reveal that there is a variation in the performance of the lines which could be attributed to the variation in the virulence of the populations as reported in the other gall midge trials.

Overall reaction: Evaluation of 110 entries in 8 field tests and one greenhouse reaction against 9 populations of gall midge helped in identification of 12 entries as most promising with nil damage in 5-6 tests of the 9 valid tests (**Table 2.1.2**). Of these **IBTWGL 3**, **RP 6614-102-11-3-3-1-1-(FBL 19101)**, **GM 5 (IBT)**, **IBTWGL 2**, **IBTWGL 21** with known gall midge resistance genes in different varietal

backgrounds were promising under retesting. Another 24 entries were promising in 4 tests.

Table 2.1.2 Reaction of most promising entries to gall midge populations in GMS, kharif 2022

GMS	Designation	IIRR	JDP	СНР	ABP	JGT	MTU	РТВ	RCI	WGL	GMS NPT
No.	Designation	GH	50DAT	52DAT	9						
		%DP	%DP	%DP	%DP	%DP	%DP	%DP	%DP	%DP	
21	IBTWGL 3 *	0.0	0.0	0.0	40.0	0.0	0.0	14.3	25.0	0.0	6
32	PTB21	0.0	0.0	0.0	20.0	0.0	0.0	23.8	0.0	10.0	6
75	WGL-1119	NT	0.0	0.0	0.0	0.0	0.0	23.8	0.0	45.0	6
2	KNM 11579	0.0	0.0	0.0	80.0	100.0	0.0	0.0	15.0	55.0	5
3	JGL 38071	0.0	0.0	NT	60.0	100.0	0.0	0.0	20.0	0.0	5
11	RP 6614-102-11-	0.0	0.0	0.0	60.0	10.0	0.0	4.8	0.0	5.0	5
11	3-3-1-1-1(FBL 19101)*	0.0	0.0	0.0	00.0	10.0	0.0	4.0	0.0	5.0	3
17	GM 5 (IBT)*	0.0	0.0	0.0	70.0	0.0	10.0	42.9	15.0	0.0	5
19	IBTWGL 2*	0.0	0.0	0.0	20.0	0.0	10.0	28.6	5.0	0.0	5
22	IBTWGL 21*	0.0	0.0	0.0	40.0	0.0	0.0	28.7	20.0	5.0	5
1	KNM 11575	0.0	0.0	0.0	60.0	100.0	0.0	0.0	15.0	45.0	5
59	RP6290-22-4 (RMS-22-24)	0.0	0.0	0.0	30.0	0.0	0.0	14.3	20.0	10.0	5
62	RP6290-22- 11(RMS-22-26)	NT	0.0	0.0	10.0	0.0	0.0	9.5	20.0	0.0	5
	Checks										
70	Kavya	0.0	0.0	0.0	0.0	100.0	0.0	0.0	15.0	100.0	6
80	Aganni	0.0	0.0	0.0	10.0	0.0	25.0	9.5	25.0	0.0	5
90	W1263	0.0	0.0	0.0	0.0	100.0	10.0	4.8	20.0	85.0	4
	Total tested	64	110	109	110	109	106	108	110	110	
Max. damag	e in the trial	40.0	100.0	70.0	100.0	100.0	80.0	47.6	45.0	100.0	
Min. damage	e in the trial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Average in t	he trial	5.3	28.5	15.5	38.8	40.2	14.2	19.7	18.4	37.1	
Damage in ⁻	ΓN1	25.6	95.0	50.0	67.5	87.5	45.0	29.8	23.8	91.3	
Promising L	evel	0	0	0	0	0	0	0	0	0	
No. Promisir	ng Entries	50	58	54	70	48	30	8	8	12	

^{*}Entry under retesting

iii)Leaf Folder Screening Trial (LFST)

To identify novel sources of resistance to rice leaf folder, *Cnaphalocrocis medinalis*, the Leaf Folder Screening Trial (LFST) was constituted and conducted in the field. The trial comprised of 10 nominations from Bapatla, Rice section, Acharya NG Ranga Agricultural University; 10 nominations from Pattambi, Regional Agricultural Research Station (RARS); one nomination from Nawagam Main Rice Research Station, Anand Agricultural University; two back-cross inbred lines (BILs) of Swarna/*Oryza nivara* from IIRR along with a susceptible check (TN1) and

resistant check (W 1263). During *Kharif* 2022, the trial was conducted at 18 locations using a randomised block design with 25 entries and 3 replications.

This is the first year of testing these entries across locations. The maximum damage in the entries ranged from 15.7 to 45.9% LFDL while the average damage in the trial varied between 8.7 and 36.1%. Data analysis revealed 22 entries as promising in 2-6 tests of 14 valid field tests (**Table 2.1.3**). Nominations from Pattambi were promising at many locations whose parentage is RP Bio226/IRGC 71598/MTU 1010. Nominations from Bapatla were also found promising at many locations.

RP5564 PTB 1-4-2 was promising in 6 out of 14 valid field tests. Four entries, *viz.*, BPT 3182, RP5564 PTB 1-4-1-2, RP5564 PTB 2-4-1-5, and RP5564 PTB 1-4-1-1 were promising in 5 out of 14 valid field tests. Three entries, i.e., BPT 3068, RP5564 PTB 1-4-1 and BPT 3085 were found promising in 4 out of 14 valid field tests. Seven entries, *viz.*, RP5564 PTB 1-3, BPT 3077, RP5564 PTB 1-1-1-2, RP5564 PTB 2-4-2-1-1, BPT 3130, RP5564 PTB 1-1-1-4 and NPK 46 were found promising in 3 valid field tests. The rest of the seven entries were promising in 2 out of 14 field tests except BPT 3239, which was found promising only at one location. W 1263, the resistant check was promising in 10 out of 14 valid field tests.

Field evaluation of 25 entries replicated thrice at 18 locations in **Leaf Folder Screening Trial (LFST)** during Kharif 2022 revealed that 22 entries were promising in 2-6 tests out of 14 valid field tests. In the **first year** of **testing**, **RP5564 PTB 1-4-2** was found **promising** in 6 of the 14 valid tests while four entries, viz., **BPT 3182**, **RP5564 PTB 1-4-1-2**, **RP5564 PTB 2-4-1-5**, and **RP5564 PTB 1-4-1-1** were promising in 5 out of 14 valid field tests. **BPT 3068**, **RP5564 PTB 1-4-1** and **BPT 3085** were found promising in 4 valid field tests out of 14 while seven entries were promising in 3 valid field tests and the rest of the entries in 2 out of 14 valid field tests.

Table 2.1.3 Performance of promising entries against leaf folder in LFST, Kharif 2022

		:		!			1001	Inchia	0,000		(/0/					
				!			Leal	loider	Jamage	Leal loider Damaged Leaves (%)	(0/)					
Designation	Darantada	ADT	BPT	CHT	CHN	CTC	KKL	KUL	LDN	MLN	NVS	NWG	PTB	RNR	NLR	NPT
Designation	raientage	80	80	47	84	09	80	09	09	86	09	09	09	87	20	11
		DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	<u>+</u>
RP5564 PTB 1-4-2	RP Bio226 x IRGC 71598 x MTU 1010	11.2	12.8	21.1	12.9	24.2	19.8	28.2	37.7	18.3	9.6	18.6	18.2	10.9	22.6	9
BPT 3182	BPT 2231/MTU 1075	25.8	14.1	21.7	9.5	17.2	29.8	27.0	44.2	18.1	0.0	17.9	23.9	16.6	9.6	2
RP5564 PTB 1-4-1-2	RP Bio226 x IRGC 71598 x MTU 1010	19.6	5.2	20.2	11.8	11.0	17.9	31.7	34.2	17.5	2.2	29.5	20.2	17.6	12.8	2
RP5564 PTB 2-4-1-5	RP Bio226 x IRGC 71598 x MTU 1010	15.8	5.7	21.7	13.8	9.7	25.3	26.1	32.8	16.6	0.0	34.3	23.5	8.0	15.9	2
RP5564 PTB 1-4-1-1	RP Bio226 x IRGC 71598 x MTU 1010	10.9	6.9	21.5	12.8	14.5	28.6	22.4	36.7	17.1	9.9	29.2	29.1	12.8	13.4	2
BPT 3068	NLR 34449/ Ramappa	21.7	10.8	19.8	10.8	11.3	29.5	18.8	37.5	20.1	6.4	28.2	31.6	22.9	8.5	4
RP5564 PTB 1-4-1	RP Bio226 x IRGC 71598 x MTU 1010	8.9	8.9	21.7	12.3	14.4	56.6	26.9	35.5	20.7	15.1	28.2	21.3	15.2	6.6	4
BPT 3085	BPT 5204/MTU 1075	29.2	17.0	22.7	15.2	8.7	20.9	19.7	32.9	16.5	26.3	17.7	25.5	31.7	26.3	4
RP5564 PTB 1-3	RP Bio226 x IRGC 71598 x MTU 1010	10.8	10.6	21.6	11.8	22.2	31.4	25.2	31.5	17.4	9.6	23.2	24.3	24.2	18.2	3
BPT 3077	BPT 5204/ MTU 1075	27.3	15.7	19.6	14.5	17.3	30.1	26.3	37.7	17.2	0.9	19.0	20.9	23.2	12.6	3
RP5564 PTB 1-1-1-2	RP Bio226 x IRGC 71598 x MTU 1010	33.6	7.5	20.3	13.8	21.4	26.7	28.0	32.7	15.5	5.8	28.2	23.0	15.1	13.9	3
RP5564 PTB 2-4-2-1-1	RP Bio226 x IRGC 71598 x MTU 1010	20.1	4.4	21.9	15.1	7.2	20.3	27.2	35.6	21.8	5.3	20.2	21.4	11.1	30.3	က
BPT 3130	BPT 5204/ MTU 1075	41.6	19.9	21.9	11.4	18.5	30.4	17.1	41.9	20.7	9.6	37.4	25.7	27.5	8.3	3
RP5564 PTB 1-1-1-4	RP Bio226 x IRGC 71598 x MTU 1010	44.1	16.9	21.5	13.9	24.1	36.8	17.5	34.7	17.9	10.3	30.4	23.2	22.7	10.3	က
NPK 46	Swarna/ O nivara BIL	32.2	28.4	19.1	15.7	21.7	32.1	29.0	36.4	17.5	0.1	37.8	25.4	24.4	9.7	3
BPT 3135	BPT 5204/ MTU 1001	27.6	18.0	20.6	14.6	27.5	26.8	24.3	40.7	19.8	6.7	30.6	24.5	26.1	17.6	2
BPT 3148	RP Bio 226/IRGC 23385// Nidhi/MTU 1081	26.8	20.6	22.9	10.9	19.9	18.3	24.4	33.5	17.6	19.3	30.1	20.8	26.7	10.9	2
NWGR 16032	Gurjari/ NWGR 3015	45.9	39.7	22.5	11.4	24.7	20.1	30.7	35.9	18.2	4.1	24.9	25.1	20.6	13.8	2
RP5564 PTB 2-4-2-1-2	RP Bio226 x IRGC 71598 x MTU 1010	21.1	4.7	20.9	11.8	20.1	28.4	32.1	35.6	14.0	18.1	25.9	24.8	15.3	12.7	2
NPK 24	Swarna/ O nivara BIL	8.3	18.2	21.7	10.2	17.7	29.9	18.9	38.0	20.0	15.3	40.0	20.8	14.0	12.8	2
BPT 3113	BPT 2270/ NLR 145	33.3	11.3	19.9	11.6	26.2	28.9	26.2	39.6	19.9	14.6	34.4	26.2	22.1	14.5	2
BPT 3192	BPT 5204/ MTU 1075	32.9	12.0	22.0	15.6	30.6	25.9	24.3	34.8	17.9	13.8	25.5	26.1	25.8	11.1	2
BPT 3239	BPT 5204/ MTU 1075	27.8	11.8	19.4	12.5	37.6	35.6	23.5	36.9	25.6	7.3	29.7	21.7	21.9	11.5	_
W 1263	Resistant check	7.9	9.2	10.3	10.3	11.8	18.2	17.8	29.2	15.0	0.1	14.7	21.7	13.5	9.3	10
TN 1	Susceptible check	40.3	33.5	20.5	15.5	22.2	27.6	27.8	46.8	17.1	31.3	42.6	22.8	30.8	15.7	
Minimum damage		8.9	4.4	10.3	9.5	7.2	17.9	17.1	29.2	14.0	0.0	14.7	18.2	8.0	9.7	
Maximum damage		45.9	39.7	22.9	15.7	37.6	36.8	32.1	44.2	25.6	26.3	40.0	31.6	31.7	30.3	
Average damage in trial		24.3	13.8	20.7	12.7	19.1	26.6	24.7	36.1	18.4	8.7	27.3	23.7	19.6	13.9	
Promising level		15	10	15	10	15	20	20	20	20	15	20	20	10	10	
Number Promising		9	8	1	1	8	4	9	0	18	19	2	1	_	9	
Data from Arundhutinagar, Ja	Data from Arundhutinagar, Jagdalpur, Karjat and Masodha was not considered for analysis due to the	is due to	<u>%</u>	pest pressure	inre											
ŀ																

iv) Stem Borer Screening Trial (SBST)

To identify novel sources of tolerance to stem borer damage in rice, Stem borer Screening trial (SBST) was conductedduring kharif 2022 with 55 entries which from IIRR (one BPT mutant and its derivatives, ILs included 37 nominations derived from O. nivara; O. rufipogon and O. glaberrima); 10 nominations from IIRReach from Cuttack, Jagtial, and Rudrur; along with the checks, PB1, TN1, W 1263, Sasyasree and TKM6. Of these, 15 entries were under retesting. The entries were evaluated at 15 locations. For effective screening, two staggered sowings were taken up in most of the locations. At IIRR and Coimbatore, infestation was supplemented through pinning of yellow stem borer egg mass. At each location, observations were recorded on dead heart damage in vegetative phase and white ear damage in reproductive phase, grain yield in the infested plant and the larval survival in the stubbles at harvest. In all the locations tested, damage by yellow stem borer was observed though it was pink stem borer at Ghaghraghat. Traces of pink stem borer were observed in stubbles at ARS, Rajendranagar farm. The results of the evaluation from the valid tests are discussed below.

Dead heart damage: The dead heart damage in the trial varied from 0.0 to 54.3% with an average damage of 18.6% DH across 6 locations in 7 valid tests. Evaluation of entries for dead heart damage at 30, 50 DAT and at 74 DAT in two staggered sowings helped in identification of four entries- **RP 6505-40**, **RP 6505-50**, **RP-6112-SM-92-R-293-2-2-4-4(a)** and **W1263** in 3 to 5 tests of 7 valid tests with ≤5% DH (DS1.0). **BK 49-76**, **BK 64-116**, **RP 6505-1** and **CGR-19-68** were promising in 2 of the 7 valid tests.

White ear damage: The white ear damage across 7 locations in 9 valid tests varied from 0.0 to 87.8% with a mean of 19.9% WE in the trial. Evaluation of entries identified, RP5564 PTB 2-4-2-1-2 and RP5564 PTB 1-4-2 as promising in 5 tests with \leq 5% WE (DS1.0). RP2068-18-3-5 was promising in 4 tests; and BK 49-76, RP5564 PTB 1-4-1, RP5564 PTB 1-4-1-1, RP5564 PTB 1-4-1-2, RP5564 PTB 2-4-2-1-1 were promising in 3 tests each.

The larval survival per entry across 7 locations in 10 tests varied from 0 to 5.6 larvae/hill in the stubbles with a mean of 1.6 larvae/hill.

Grain yield: CR Dhan 308 and **NSR 10 (RP BIO 4919)** were promising in 7 and 6 tests, respectively of the 8 valid tests with grain yield of ≥15g/hill despite white ear damage. **RDR-1930**, **RP 6505-1**, **RP 6505-50**, **RP 6505-82**, **BK 49-76**, **KMR3**, **NSR 88 (RP BIO 4919)**, **RP-6112-SM-92-MS-M-R-41-7-55-3-11-6-2**, **RP-6112-SM-92-MS-M-R-279-3-6-2-10-5-8**, **SM-92**, **RP-6112-SM-92-R-159-6-6-14-14**, **RP-6112-SM-92-R-293-1-1-3-3**, **RP-6112-SM-92-R-273-3-3-11-11**, **CGR-4**, **RP 6505-40** were **promising** in 5 of the 8 tests with grain yield of ≥15g/hill. Of these 8 entries were under retesting.

Overall reaction: Evaluation of entries in 16 valid field tests for dead hearts and white ear damage identified 10 entries as promising in 4 to 5 of the 16 tests in terms of low dead heart (\leq 5% DH) and white ear damage \leq 5% WE. They were also promising in 1 to 5 tests of the 8 valid tests with higher grain yield (\geq 15.0 g/hill) suggesting that recovery resistance and tolerance could be the mechanism in these entries as they have good grain yield despite damage. The mean no. of larvae in the stubbles in these entries varied from 0.9-2.4/hill **(Table 2.1.4)**. BK 49-76, BK 64-116 and RP 2068-18-3-5 were under retesting.

Table 2.1.4 Reaction of most promising cultures to stem borer in SBST, kharif 2022.

				No.of promi	sing test	s (NPT)	
SBST No.	Entries	SBDH	SBWE	SBDH+ SBWE	SBGY	DH+WE+GY	Mean larvae/hill
NO.		7	9	16	8	24	
11	BK 49-76*	2	3	5	5	10	1.7
5	RP 6505-40	5	0	5	4	9	2.4
47	RP5564 PTB 2-4-2-1-2	0	5	5	4	9	1.0
52	RP5564 PTB 1-4-2	0	5	5	3	8	1.1
53	RP5564 PTB 2-4-2-1-1	0	5	5	2	7	0.9
12	BK 64-116*	2	2	4	3	7	1.6
28	RP-6112-SM-92-R-293-2-2-4-4(a)	3	1	4	3	7	1.7
49	RP5564 PTB 1-1-1-2	1	3	4	1	5	1.3
54	RP2068-18-3-5*	0	4	4	4	8	1.1
	Check						
50	W1263	4	1	5	4	9	1.9

^{*}Entry under retesting

Data on dead heart damage from ABP, ANR, GGT, NVS, MNC, NLR; RNR, TTB white ear damage from ADT, GGT, ABK, ARN, MNC, NVS and NLR not considered for analysis due to low pest pressure.

Valid data considered for analysis

Parameters	Locati	ons								Total Tests
Dead heart damage	ADT	CBT	PNT-2	PNT-2	PTB	PSA	RPR			7
White head damage	IIRR	PNT-1	PNT-2	PTB	PSA	RNR-1	RNR-2	RPR	TTB	9
Grain yield (g/hill)	IIRR	PNT-1	PNT-2	PTB	PSA	RNR-1	RNR-2	RPR		8

v) Multiple Resistance Screening Trial (MRST)

This trial was constituted with a view to identify the reaction of entries found promising in pest specific trials to other pests and also to evaluate the reaction of advanced breeding lines to insect pests. The trial included evaluation of 40 entries consisting of 8 lines promoted from SBST trial, one entry from PHS trial, 4 nominations from ARS Rajendranagar; four N22 EMS mutants tolerant to heat, 6 wild rice introgressed lines from IIRR; 10 entries under retesting along with five resistant and one susceptible check. The entries were evaluated against 11 insect pests at 26 locations. Some of the introgressed lines possessing disease resistance have been included in this trial to evaluate their reaction to insect pests. The details

of the reaction of entries for valid data is available in **Screening Nurseries- Diseases and Insect pests Vol II.**

The valid data pertaining to reaction of entries from various locations are discussed pest wise.

BPH: Entries were evaluated in six greenhouse and two field tests against BPH. Field screening was augmented by releasing insect periodically to ensure population build – up at RNR. RP Bio 4918-230 was promising in 3 of the 8 valid tests. CRCPT 8, RPBio4918 (DBNPK13), NND-2, RNR 37998, RNR 37971, PTB 33, RP 2068-18-3-5 were promising in only 2 of the 8 tests against BPH with a DS ≤3.0. The resistant checks, PTB33 and RP2068-18-3-5 recorded a DS of ≤3.0 in 4 valid tests. PTB21, RP Bio 4918(NPK 77-3) and WGL 1062 exhibited field tolerance against BPH with ≤DS 3.0.

WBPH: RP Bio 5477-NH363 was the only entry which recorded a DS of 2.4 in greenhouse reaction at IIRR but at CBT it had recorded a DS of 7.0.

Gall midge: Entries were evaluated in one greenhouse and 7 field tests and identified 4 entries as promising in 2 of the 8 valid tests with nil damage. The resistant check W1263 recorded nil damage in 3 tests. WGL 1062, HWR20 and RNR 37964 recorded nil damage at IIRR and Ambikapur. RNR 37971 recorded nil damage at IIRR and Pattambi.

Stem borer: Entries were evaluated against stem borer at vegetative phase for dead heart damage in 8 valid tests. At IIRR infestation was augmented through release of neonate larvae/ egg mass. RP Bio 4918-224* recorded nil damage in 3 of the 8 valid tests. At reproductive phase, of the 9 valid tests with ≤5 % WE damage, RP 6461-248-1* was promising in 3 tests and RPBio4918-DB-NPK55, WGL 1062, KMR3, NND-2 were promising in 2 tests each.

Foliage feeders: Incidence of leaf folder, whorl maggot, case worm and rice hispa were observed at various locations. RP Bio 4918-269, RP 6461-248-1*, PTB21 and RP 5587-B-B-B-267 recorded ≤5 % DL at against leaf folder at Nellore where the average damage in the trial was 11.7 % DL. Incidence of whorl maggot was recorded at 5 locations. RP Bio 4918-224 and CRCPT 8 recorded nil damage at Nellore of the 5 valid tests against whorl maggot. Case worm damage was reported from Brahmavar (mean damage 26.9% DL) and Pattambi (mean damage7.9 % DL). The population was 5.1 larvae per hill at 45 DAT at Brahmavar.

Overall reaction: Evaluation of 40 entries in 6 greenhouse and 45 field tests against 7 insect pests helped in identification of 7 entries and 3 checks as promising in 5-8 tests against 2-4 insect pests with a PPR of 2.8-6.7 **(Table 2.1.5)**. Of these 4 entries were in the first year of testing viz., **PTB21**, **NND2**, **WGL1062** and **RNR37971**; three entries viz., **RP 6461-248-1**, **RP Bio 4918-230** and **CRCPT 8** identified as **promising** were under second year of retesting. The check lines W1263, RP 2068-18-3-5 and PTB 33 were promising in 6-8 tests against 2-3 pests with a PPR of 3.9-6.7.

Valid reaction to insect pests considered for analysis in MRST, kharif 2022

Insect pests	Reaction				Locati	ons/ Tes	sts				Total tests
BPH	GH	IIRR	LDN	MTU	MND	CBT	PNT				6
BPH	FR	RNR*	RNR*								2
WBPH	GH	IIRR	CBT								2
BPH+ WBPH		MTU	GNV	GNV							3
GM	FR	IIRR	ABP	CHP	JDP	WGL	PTB	ADT	GNV		8
SBDH	FR	ADT	CHN	MSD	NVS	PNT	PTB	PSA	RPR		8
SBWE	FR	IIRR*	MLN	PSA	LDN	CHN	MTU	NWG	PNT	RPR	9
LF	FR	CHT	MLN	NWG	NLR	PTB	PSA				6
WM	FR	ADT	CHN	JDP	NLR	PTB					5
CW	FR	BRH	PTB								2

^{*}Augmented Insect infestation

Data on BPH from JDP, RPR, WGL; WBPH from WGL,PNR; GLH from JDP& RPR; GM from RCI, NLR, TTB; SBDH from BRH, CHP, JDP,MTU, NWG; SBWE from PTB, ADT, BRH, CHP, GNV, MSD, NLR, RNR, RCI,TTB, WGL,ABP; LF from ADT, GNV, JDP, LDN, RNR, RPR, RCI, TTB, WGL, MSD, NVS, TTB; RH from NLR& RPR; were not included due to low pest pressure.

Table 2.1.5 Reaction of most promising entries against insect pests during kharif 2022.

				No.	of pro	mising te	sts (NPT))				lo. of omising	MRI	
MRST No.	Designation	ВРН	WBPH	BPH+ WBPH	GM	SBDH	SBWE	LF	WM	cw	Test	Pests	T*P	PP R
		8	2	3	8	8	9	6	5	2	51	7	357	
5	RP 6461-248-1*	1	0	0	0	1	3	1	0	0	6	3	18	5
16	PTB21	1	0	1	1	1	1	1	0	0	6	4	24	6.7
31	NND-2	2	0	0	0	1	3	0	0	0	6	2	12	3.4
4	RP Bio 4918- 230*	3	0	0	0	1	1	0	0	0	5	2	10	2.8
9	CRCPT 8*	2	0	1	0	0	1	0	1	0	5	2	10	2.8
26	WGL 1062	1	0	0	2	0	2	0	0	0	5	2	10	2.8
38	RNR 37971	2	0	0	2	0	1	0	0	0	5	2	10	2.8
	Checks													
10	PTB 33	4	0	2	1	1	0	0	0	0	8	3	24	6.7
15	W 1263	0	0	0	3	1	1	1	0	0	6	3	18	5
25	RP 2068-18-3- 5*	4	0	1	0	1	1	0	0	0	7	2	14	3.9

^{*}Entry under retesting; Percent promising reaction (PPR)= MRI of individual entry*100/Total MRI

vi. National Screening Nurseries (NSN)

a) IIRR- National Screening Nurseries (NSN)

IIRR-National Screening Nurseries (NSN) comprised of 4 trials -National Screening Nursery 1 (NSN1), National Screening Nursery 2 (NSN2), National Screening Nursery – Hills (NSN hills) and National Hybrid Screening Nursery (NHSN). **IIRR-NSN1** was constituted with 348 entries (326 AVT entries along with 10 insect checks and 12 disease checks) and evaluated at 18 locations against 10 insect

pests. **IIRR-NSN 2** trial comprised of 581 entries (557 entries from IVT trials, 10 insect and 14 disease checks) was evaluated at 17 locations against 8 insect pests. **IIRR NSN- Hills** trial consisting of 124 entries (100 hill entries + 10 insect check lines and 14 disease checks) was evaluated at 7 locations against 7 insect pests. **IIRR-NHSN** trial constituted with 122 entries (98 hybrids + 10 insect checks +14 disease checks) was evaluated at 12 locations against 8 insect pests. The valid data in each trial are discussed pest wise:

Brown planthopper

IIRR-NSN1: Entries were evaluated against BPH under greenhouse conditions at IIRR, CBT, LDN and MND. IET Nos. 29749 and 30261 recorded a damage score (DS) of ≤3.0 and <10 % hopper burn in 4 of the 5 valid tests; IET Nos 29743, 30233, 30282 and 29203 recorded a damage score (DS) of ≤3.0 in 3 of the 5 tests in greenhouse evaluations. PTB-33 and RP 2068-18-3-5 were resistant (DS of ≤3.0) in 4 and 3 tests, respectively.

IIRR-NSN2: Entries were evaluated against BPH under greenhouse conditions at IIRR, CBT, LDN and MND. **IET No 30815** was **resistant** in 4 of the 5 tests and was at par with PTB33 and RP 2068-18-3-5. **IET Nos 30835, 30845, 30852, 30859, 31068, 31119, 31128, 31129, 31131, 30780, 30794, 30665** were **promising** in 2 of the 5 valid tests with a DS of ≤3.0.

IIRR-NSN hills: Entries were evaluated against BPH under greenhouse conditions at IIRR, CBT, LDN and PNT. **IET 28882** exhibited a DS \leq 3.0 at CBT and LDN out of 4 tests and was at par with the reaction of RP2068-18-3-5. The resistant check, PTB33 had a DS \leq 3.0 at IIRR, LDN, & CBT.

IIRR-NHSN: **IET Nos 30594** and PTB 33 were promising in 4 of the 5 valid tests against BPH in greenhouse reaction with a DS of \leq 3.0. **IET No 30597** and RP 2068-18-3-5 were promising in 3 and 2 tests, respectively.

White-backed planthopper

IIRR-NSN1: Entries were evaluated in greenhouse conditions against WBPH at both IIRR and Coimbatore. None of the test entries were observed to be promising for WBPH except MO1 at IIRR. At Coimbatore, 2 entries viz., **IET nos 29446** and **29235** were found promising with a DS \leq 3.0 but MO1 recorded DS 5.0.

IIRR-NSN2: Entries were evaluated in greenhouse conditions at IIRR and CBT. **IET nos. 30866** and **31003** recorded a DS≤ 3.0 at Coimbatore.

IIRR-NSN hills: Entries were evaluated under greenhouse conditions at IIRR and CBT. **IET 30528** at **IIRR** and **IET 30518** at CBT recorded a DS \leq 3.0 in greenhouse reaction. MO1 recorded resistant reaction (DS \leq 3.0) at IIRR only.

IIRR-NHSN: Entries were evaluated in greenhouse conditions against WBPH at both IIRR and Coimbatore. None of the test entries were observed to be promising

for WBPH except MO1 (DS 1.5) at IIRR. At Coimbatore, MO1 recorded DS 5.2 and PTB 33 recorded 2.8.

Mixed population of Planthoppers

IIRR-NSN1: Entries were evaluated in field against mixed population of planthoppers at Gangavathi (at 68 DT) and Maruteru (90 DT). **IET Nos 30106**, **30078**, **29238**, **29214**, **29935**, **28524**, Gontra Bidhan-3 (NC), and PTB33 were identified as promising (DS \leq 3.0) at both locations to mixed populations of planthoppers. The average infestation at Gangavathi was 256 planthoppers /10 hills at 68DAT. The ratio of BPH to WBPH was 1:1.15 whereas at Maruteru it was 9:1.

IIRR-NSN2: All the entries were evaluated in field against a mixed population of BPH and WBPH at Gangavathi, Kaul and Maruteru. The ratio of BPH to WBPH was 1: 1.16 at 60-90 DAT at GNV: 10BPH: 1WBPH at Kaul and 9BPH: 1WBPH at MTU. At Gangavathi and Kaul all the entries had a population of >50 insects /10 hills. However, at Maruteru, 42 entries scored a DS ≤3. **IET Nos 30851, 30873, 30874, 30875, 30879, 30880, 30881, 30889, 30971, 30978, 31120**, Swarna scored DS1.0 and was at par with the resistant check RP2068-18-3-5.

IIRR- NSN hills: All the entries were susceptible at Maruteru when evaluated against mixed population of BPH and WBPH (9:1) under field conditions at 90DT except PTB33 and RP2068-18-3-5 (DS 3.0).

IIRR-NHSN: None of the test entries were promising in field reaction at Maruteru. PTB 33 and RP 2068-18-3-5 recorded a DS of 3.0.

Gall midge:

IIRR-NSN1: Evaluation of NSN1 entries under field conditions in 6 valid tests revealed that **IET No 30097** recorded nil damage in four tests (ABK, CHP, SKL & TTB). **IET nos 30093** and **29742** recoded nil damage in 3 tests and were at par with Aganni. WGL 32100 (RP) and IET 30632 recorded nil damage in 2 of the 6 tests and were at par with Suraksha and W 1263.

IIRR-NSN2: **IET Nos 30841** and **30667** were promising with nil damage in two field tests of the 4 valid tests and were at par with Aganni.

Stem borer:

IIRR NSN1: **IET Nos 30013, 30028, 30021, 30083, 28489**, US 312 (HC), 29875 and W1263 were promising with <10% DH (DS 3.0) in 2 of the 7 valid field tests for dead heart damage. **IET Nos 30003, 29409, 30106, 30078** and **29935** were promising in 2 of the 7 valid field tests with $\leq 5\%$ (DS 1.0) white ear damage. However, the reaction needs to be further confirmed under greenhouse conditions.

IIRR NSN2: IET 30831, 30849, 30880, 31077, 31001,31122,30794,30745, 30755, 31151, 30649 had nil dead heart damage in 2 of the 5 valid tests. 27 entries recorded $\leq 5\%$ WE damage in 2 of the 4 valid tests.

IIRR NSN hills: Only one entry, Vivekdhan 65 (NC) had recorded <10% dead heart damage (DS <3.0) in field reaction at Pantnagar. Valid data for stem borer white ear damage was recorded from 3 locations, LDN, MLN and PNT. **IET nos 28880, 28893, 30487, 30492, 30499, 30500,** VL Dhan 158 (ZC for North and South), and Vivekdhan 86 (NC), Nidhi and Aganni recorded <5% white ear damage (DS 1.0) in field reaction at Pantnagar and Ludhiana.

IIRR NHSN: **IET Nos 30621, 30624, 30576** and MTU-1010 recorded nil damage in field reaction at Chinsurah at 50 DAT. However, IET Nos 30621, 30624, recorded a DS of 5.0 and 3.0 respectively at Pantnagar at 70 DAT. IET No 30576 and MTU-1010 were early maturing.

IET Nos 30609, 30624 and HR-12 were promising in 3 of the 6 valid tests with <5 % WE damage (DS <1.0).

However, these lines need to be further tested under greenhouse conditions for validation of the reactions and to check that they are not escapes as it is more common in very short and long duration varieties.

Leaffolder:

IIRR-NSN1: None of the entries were promising against leaffolder in the field evaluation at Nawagam and Pusa at 30 and 41 DAT, respectively

IIRR NSN2: Entries were evaluated in field for leaffolder damage at Kaul and Malan. However, none of the entries were promising.

IIRR NHSN: None of the entries were promising against leaffolder at Nawagam and Pattambi. Average damage in the trial was 22.7 and 9 % DL, respectively.

IIRR NSN Hills: Vikramarya was the only variety which recorded <15% damaged leaves from both Malan and Chatha.

Other insect pests: Some of the damages by other minor pests observed in the trials are detailed below:

Green leafhopper:

Low incidence of GLH @10.1 insects/10 hills was recorded at Jagdalpur (68DT).

Whorl maggot

IIRR NSN1: **IET No 29700** and US 312 (HC) recorded nil damage at Jagdalpur (68 DT). **IET Nos 29715, 30230, 30247, 29546** had nil damage at Rajendranagar at 30 DAT.

IIRR NSN2: Incidence was observed at Aduthurai (48 DAT), Chinsurah (45 DAT) and Jagdalpur (78 DAT). The average damage varied from 3.1-4.7 % DL.

IIRR-NHSN: Low incidence was observed with average damage of 8.2% DL at 30 DAT at Pattambi.

Rice hispa

IIRR-NSN1: Average leaf damage by rice hispa in the trial was 6.9 % DL at Raipur. One entry, IET 29246 had nil damage.

Case worm

IIRR- NSN1: Field incidence was observed at Titabar and the average damage was only 3.3 % DL.

IIRR-NHSN: The average damage in the trial at PTB was 10.4 % DL and IET 30603 had nil damage for case worm.

Gundhi bug

IIRR-NSN1: **IET No 30022** was the only entry which recorded nil grain damage by gundhi bug at Masodha in field evaluation at 90 DAT when the average damage in the trial was only 5.3 % damaged grain (DG).

IIRR- NSN2: At GGT, the average damage was 7.5% DG.

IIRR-NSN Hills: Incidence of Gundhi bug at Chatha was recorded with an average of 42.8% DG.

Grasshopper

In NSN hill entries, grasshoppers (*Oxya nitidula, Hieroglyphus* spp. *Attractomorpha pscittacina* & Long-horned grasshopper caused leaf damage of 8.9 % at Khudwani and rice skipper (*Paranara guttata*) was also observed.

Overall reaction

IIRR-NSN1: Evaluation of 348 entries at 18 locations in 7 greenhouse and 25 field tests against 5 insect pests identified 12 entries viz., IET nos 29749, 29743, 29935, 30233, 30261 as promising in 5 tests; 30097, 30078, 29235, 29238, 29875, 29203, 30106 in 4 tests of the 32 valid tests against 2 pests. PTB 33 was promising in 7 tests; Aganni and W1263 in 4 tests each (Table 2.1.6).

IIRR-NSN2: Evaluation of 557 entries along with 24 checks in 26 valid tests (8 greenhouse and 18 field tests) against 5 insect pests identified 9 entries as promising in 5-8 tests. IET no 30838 was promising in 6 tests; IET nos 30831, 30845, 30851, 30852, 30966, 30794 were promising in 5 tests. RP 2068-18-3-5 and PTB-33 were promising in 8 and 6 tests, respectively of the 26 valid tests (Table 2.1.7).

IIRR- NSN hills: Entries were evaluated at 7 locations in 15 valid tests (6 greenhouse and 9 valid field tests) against 6 insect pests. Three test entries viz., Vivekdhan 86 (NC), IET Nos 28887, 30518 along with check lines Nidhi, HR12 and RP 2068-18-3-5 were promising in 3 tests. Aganni and PTB 33 were promising in 5 and 4 tests respectively of the 15 valid tests (Table 2.1.8).

IIRR-NHSN: In this trial, 98 hybrids along with 24 checks were evaluated in 7 greenhouse and 11 field tests against 4 insect pests at 12 locations in 18 valid tests. The results identified **IET Nos 30602, 30624 30594** and RP 2068-18-3-5 as promising in 4 of the 18 tests. PTB33 was promising in 6 valid tests; **IET Nos 30609, 30620** and **30597** were promising in 3 tests **(Table 2. 1.9)**.

It is pertinent to note that since most of the breeding lines in these nurseries were not—specifically bred for insect resistance, the number of promising tests is very low in all the identified promising entries in the nurseries. So, these entries need to be further tested, verified and validated for one or two seasons under suitable pest pressure situations for use in pest resistance breeding programs.

Table 2.1.6 Performance of the most promising cultures against insect pests in IIRR- NSN1, kharif 2022

ъ _	Ţ	2							_	_	_				_	\Box				П	_	_		П		П
_F Over all	NPT NPT	2 32	\vdash	0 5	0 5	0 5	0 5	0 5	0 4	0 4	0 4	0 4	0 4	0 4	0 4	Н	2 0	0 4	0 4				H			Н
PSA LF	F.	L	%DL	14.1	12.2	11.6	11.7	14.2 (11.7	12.4	14.8 (13.3 (6.4 (13.3 (11.4 (12.9 (14.1 (13.3 (348	17	2	12.7	12.7	0	0
NWG P8	LF L	30DT 41DT	_	22.4 14	_	16.2 11	22.4 11	16.9	13.1	7.0 12	9.5 14	7	20.3 6	11.7 13	15.6 11		8.3 12	12.6 14	9.1 13	343 3,	43 1	9	16.8 12	16.7 12	0	0
	Н	30	N DF	Н	24.					H		21	50				∞		_	37	4	_	16	16	_	
- SBWE	Æ NPT	4 7	ш	0	3 1	. 2	0 /	.2 0	1 0	2	0	4 0	3 1	3 0	1 2		1	1	0 /	0.1						
SKL	E SBWE	F.H	≡ %WE	NG	30.3	3.5	15.	30	27.1	6.3	SN .	27.4	27.8	22.3	11.1		26.4	2.9	22.7	312	72	3	26	33	5	2
RPR	SBWE	. 92DT	%WE	53.2	40.9	9.1	10.0	17.6	57.8	1.8	40.4	5.9	11.1	36.4	0.0		0.0	25.9	57.4	344	88	0	36	32	2	10
PNT	SBWE	114DT	3W %	12.7	0.0	0.0	35.7	62.9	7.9	0.0	3.1	11.5	4.1	16.9	0.0		53.4	74.1	6.9	343	06	0	20	20	0	12
NWG	SBWE	Pr. H	% WE	10.0	1.9	8.5	9.3	10.0	10.9	9.4	10.3	8.9	12.0	16.0	5.2		15.6	12.8	13.7	343	35	2	10	13	0	0
MNC	SBWE	Pr. H	%WE	NT	ΙN	IN	LΝ	N	9.8	ΙN	3.1	4.2	NT	NT	NT		LΝ	NT	NG	92	22	0	9	NG	0	2
MSD	SBWE	TO06	3W %	9.6	11.3	9.5	9.1	13.8	11.0	5.9	5.8	11.1	6.5	11.0	8.3		13.1	14.1	15.5	345	150	3	11	13	5	4
PSA	SBWE 8	EDDT (, WE	17.3	15.5	16.7	14.5	15.9	14.1	13.2	16.4	15.5	4.3	17.5	15.5		15.3	14.9	14.5	348	18	4	15	13	5	4
SBDH	NPT S	5 /	0	0	-	-	_	-	0	0	_	1	3	0	0		0	0	2							
TTB St	SDBH N	46DT	MD%	4.0	0.0	0.0	4.8	4.2	3.7	7.1	8.3	7.7	0.0	10.0	4.8		4.8	8.7	NG	343	23	0	9	NG	0	19
-	SBDH SC	50DT 46	% HQ%	NG 4	8.8	0.9	8.7 4	9.4 4	17.0	0.6	NG 8	10.8	8.4	6.3	9.0		5.3 4	5	11.8 N	312 3	26 2	0	8	۷ 6	0	,
R SKI	-	-	-	Н	┝	H	┝		1.9 17	⊢							┡	.5 22.	-	Н				_		H
4 RPR	H SBDH	T 66DT	HO% H	7 13.5	6 4.0	2.9	0.0	8 14.0	Ŀ	7 20.0	2 0.0	0.0	0.0	15.4	10.0		4 30.2	3 25.	14.5	345	40	0	13	11	0	78
- PSA	H SBDH	T 41DT	HO% F	16.7	12.6	15.7	17.6	13.8	14.7	15.7	12.2	12.6	9.7	17.1	14.9		17.4	14.3	15.1	348	20	2	15	16	10	12
PNT	SBDH	T097	HO%	23.3	20.5	32.0	18.4	29.2	29.0	20.9	25.3	28.4	35.3	NA	27.7		87.3	80.0	5.8	205	87	9	28	37	10	2
PNT	SBDH	56DT	MD%	4.7	5.9	7.1	8.4	0:0	6.5	5.8	10.3	6.7	9.1	8.5	8.5		12.9	13.6	0.0	343	21	0	∞	6	0	3
MSD	HOBS	TG97	LO%	8.0	12.2	9.1	5.7	13.0	10.5	10.1	9.1	12.3	9.2	12.0	10.2		10.9	12.1	13.3	345	41	3	10	13	3	2
GMIN	NPT	9		0	0	0	0	0	4	0	1	1	0	0	0		0	3	2							
TTB	В	50DT	SS%	8.0	4.8	3.8	4.8	8.3	0.0	7.1	0.0	0.0	3.8	5.0	9.5		4.8	8.7	NG	343	15	0	2	NG	0	25
GNV	МĐ	100 8	SS%	20.9	26.3	2.5	9.8	16.7	19.0	18.8	9.1	2.6	13.5	14.3	17.9		33.3	2.78	1.6	347	89	7	21	43	0	0
WGL	GM	58-70DT	% DP	95.0	0.06	45.0	85.0	70.0	65.0	70.0	0.06	85.0	80.0	0.09	100.0		10.0	0.0	45.0	339	100	0	75	85	0	3
SKL	GM	50DT	% DP	NG	100.0	100.0	100.0	100.0	0.0	100.0	NG	100.0	100.0	100.0	100.0		65.0	0.0	0.0	312	100	0	92	85	0	8
СНР	ВM	50DT	dO%	80.0	80.0	90.0	70.0	40.0	0.0	70.0	80.0	0.09	100.0	40.0	50.0		50.0	0.0	0.0	342	100	0	46	30	0	10
ABK	ВM	50DT	% DP	90.0	100.0	80.0	0.09	0.09	0.0	80.0	0.09	50.0	90.0	80.0	100.0		80.0	10.0	0.09	347	100	0	20	25	0	10
BPH+ WBPH	NPT	3		1	0	2	1	0	0	2	1	2	0	1	2		2	0	0							
MTU	Н	LQ06	SO	7	2	3	7	2	6	3	6	3	6	6	3		_	6	6	343	6	_	8	6	3	13
GNV	표	1089	SO	1.0	5.0	1.0	1.0	5.0	3.0	1.0	1.0	1.0	7.0	1.0	1.0		1.0	NG	3.0	317	6	-	4	6	1	29
GNV	ЬН	(8DT	No. /10h	113	271	207	226	167	225	182	209	189	301	125	187		108	RD	149	317	497	98	256	402	20	0
МВРН	NPT	2	_	0	0	0	0	0	0	0	_	0	0	0	0		0	0	0							
CBT	WBPH	땅	DS	6.4	5.0	0.9	3.8	4.8	9.0	8.9	3.0	5.2	8.0	5.0	5.2		5.0	NG	0.9	337	6	3	7	5	3	2
IIRR	WBPH \	늉	SO	8.4	7.0	6.4	8.0	7.0	8.9	7.8	9.0	9.0	9.0	5.3	9.0		4.7	6.7	9.0	348	6	2	∞	6	3	-
BPH	NPT W	2		4	3	0	3	4	0	0	0	0	0	3	0	Н	4	0	0				Н			H
	BPH I	뇽	%HB	5.0	15.4	52.4	14.3	8.7	65.2	39.3	2.99	9.08	73.5	12.5	65.2	П	34.8	100.0	42.1	342	100	2	92	100	10	4
MND MND	BPH	Н	SO	3.0	3.0	5.0	3.0	3.0	7.0	5.0	7.0	9.0	7.0	3.0	7.0	П	3.0	9.0	5.0	342	6	3	7	6	3	23
LDN	BPH	Н	SO	3.3	3.0	8.4	3.0	3.3	8.4	8.1	7.9	8.1	8.1	3.0	8.1		3.0	8.1	8.1	344	6	3	7	8	3	22
IRR CBT	HJB	핑	DS	3.0	9.8	5.2	5.2	3.0	8.0	5.4	5.8	5.0	5.4	3.4	7.0	Ц	3.0	NG	9.0	337	6	3	7	8	3	4
IIRR	BPH	퓬	DS	1.0	0.7	9.0	1.0	0.4	9.0	8.4	8.4	9.8 (0	9.0	2.1	9.0	Ц	1.7	8.3	9.0	340	6	0	∞	6	3	12
	IET No. Designation			VNR-230 (Hybrid)	HRI-211 (Hybrid)	MTU 1377	WGL 1495	RP 6317-RMS-S35- BC2F4-49-25-12-18	NWGR 16050	MTU 1382	PNPK 7106	ORJ 1351 (TP 30600)	BRR 2074	CR 4331-85-1-1-1	MTU 1358						le.		in the trial	11	F	
2		.00		191 29749	196 29743	208 29935	233 30233	264 30261	20002	86 30078	92 29235	96 29238	180 29875	323 29203	55 30106	Check	343 PTB 33	340 Aganni	348 W1263	Total Tested	Max. in the trial	Min. in the trial	Ave. damage in the trial	Damage in TN1	Promising level	No. promising

Data from JDP, WGL, PNT for BPH; PNT; WGL for WBPH; MNC, for GM; MNC,,CHP,GNV, JDP,RNR, NWG,SKL, WGL for SBDH; CHP,GNV, RNR, MNC, WGL, TTB for SBWE; GNV, MSD, JDP, MNC, TTB for LF; JDP for WM;GGT for GB; RNR & JDP for WM;TTB for CW; RPR for RH - not considered for analysis due to low pest pressure.

,Valid insect pest considered for analysis in NSN1, kharif 2022

Insect pests	Reaction			Poo	ocations				Total
BPH	H9	IIRR	CBT	LDN	(SQ)QNW	MND(HB)			9
WBPH	НS	IIRR	CBT						7
BPH+WBPH		GNV	GNV	MTU					3
GM	FR	ABK	CHP	SKL	MGL	GNV	TTB		9
SBDH	FR	MSD	PNT	PNT	PSA	RPR	SKL	TTB	2
SBWE	FR	PSA	MSD	MNC	NWG	PNT	RPR	SKL	2
LF		PSA	NWG						2

Table 2.1.7 Performance of most promising cultures against insect pests in IIRR- NSN2, kharif 2022.

)	-		2	,				-	ŀ		,		ľ	ľ		ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	-	ŀ	-		
			IR O	CBT	N N	IIRR CBT LDN PNT MND MND	9	N M M	H.	IR CBT	WBPH	₹ S	MT	₹	뷾	몽	름	ADT	SN SN		- GGT	MLN	SW	L N	PN S		몽		NNS	PNT	SBWE KUL	JL MLN	_ 	Over
SS	12 IET No	NSN2 IETNo. Designation	동	ᇙ	용	ᇙ	유 300T		퓽	퓬		63DT	r 90DT	E0DT	WBPH	30DT	75DT	48DT	30DT		30DT 9	90DT 5	50DT 5	55DT 7	T077		89DT 6	68DT P	Pr.h	120	30DT	DT 90DT		-
≥			ᇤ	BPH BPH BPH	H	BPH BPH		BPH NPT		WBPH WBPH	H NPT	푼	푼	丟	MPT	В	B	₩	W _S	NPT	SBDH S	SBDH S	S BDH S	SBDH S	SBDH	NPT	SBWESI	SBWESE	BWESE	BWE	NPT	<u>"</u>	M M	M
			20	SO SO		SO SO	S %HB	9 里	8	SOS	7	No./10h	N DS	No./10h	က	%SS	SS%	SS%	SS%	4	LQ%	%DT	%DH	%DH	MO%	5	%ME %	%ME %	%ME %	, 3WE	4 %DI)L %DI	- 5	92
∞	30838	3 KNM 12469	8.2	8.9	8.0 2.	2.7 7.0	7.0 75.	75.0 1	8.	1 8.4	0	348	3.0	150	-	8.7	19.0	0.0	33.3	_	20.8	1.1	0:0	10.9	32.3	_	3.3	10.9	0:0	5.0	2 8.7	7 25.7	0	9
_	30831	AD 18158	4.9	5.2	8.3 2.	2.5 7.0	7.0 72.	72.7	9:0	0 5.8	0	339	2.0	153	0	5.2	12.3	8.0	19.4	0	21.8	0:0	0:0	8.9	35.6	2	9.8	13.2	0:0	0:0	2 13	13.2 21.2	0	ιCO
15	30845	; CR 4206-17-4-2-2	7.2	4.2	8.3	9.0 3.0	.0 26.3	5.3 2	9:0	0 5.3	0	291	<u>Р</u>	187	0	12.1	25.0	0.0	25.0	-	29.3	21.1	0:0	5.3	*	-	31.9	20.5	0.0	18.3	1 9.9	9 18.9	0	Z
7	30851	CN 1317-557-5-6-BNKR 42-2-5-1 (BNKR 121) 3.9		8.9	8.3	9.0 9.0		93.8 0	5.2	2 7.4	0	230	1:0	128	-	11.4	0:0	1.0	58.1	<u>_</u>	20.8	1.8	0:0	3.7	31.8	<u>_</u>	4.1	2.2	0.0	11.5	2 13	13.5 12.9	0	ഹ
22	30852	MTU1400 (MTU 2374-93-1-1-1)	3.0	4.8	8.3	9.0 3.0		19.0	5.3	3 4.2	0	151	3.0	121	-	3.2	21.5	0.0	5.3	<u></u>	35.4	4.2	13.3	2.1	39.3	0	10.7	19.6	8.3	4.5	1	10.6 13.3	0	ς.
271	30966	3 RP 6686-CGR 22	6.9	9.6	3.0	9.0	7.0 66.	1 199	7.4	5.1	0	259	3.0	149	-	17.0	16.3	8.0	24.4	0	24.4	23.5	0:0	5.9	*	-	2.5	20.0	0:0	6:0	2 17.7	.7 20.0	0	ഹ
368	30794	. PRNP 10027	5.6	5.0	3.0	9.0 7.0	.0 66.7	3.7 2	7.4	4 5.0	0	275	7.0	167	0	9.4	42.7	8.0	16.7	0	25.0	0.0	0:0	3.8	27.1	2	9.4	6.5	0.0	18.5	1 15	15.0 28.0	0	Z
	Checks	S																																
576		PTB 33	1.5	4.8	2.7 7.1	7.1 3.0	.0 8.3	5.	4.3	3 5.8	0	375	2.0	126	0	4.8	12.2	1.4	45.9	0	20.0	12.5	0:0	7.8	31.0	.	3.4	7.5	0.0	33.6	1 12	12.9 10.0	0	9
578	~	RP 2068-18-3-5	1.7	1.7 5.0 2.7 2.8	2.7 2	3.	3.0 25.0	5.0	5.8	9 2.6	0	331	1.0	142	-	4.7	0:0	1.7	30.8	<u> </u>	21.1	0.0	5.9	13.0	16.8	~	6.7	7.3	8.3	0.0	1 16	16.0 22.7	0	∞
Total	otal tested		228	526 5	538 56	581 53	535 535	35	228	8 527		572	429	221		290	565	555	572		281	554	270	295	149		268	568 5	562	295	551	554		
Maxir	mum dame	Maximum damage in the trial	87.0 9.5		9.0	9.0	9.0 100.0	0.0	9.0	0.6		433	9.0	211.0		35.6	8.19	4.2	84.2		55.6	29.4	53.3	35.8	97.1	_	41.6	37.5 4	44.4	7.79	33.8	.8 30.9		
Minim	num dama	Minimum damage in the trial	0.3	0.3 3.0 2.7 1.7	2.7 1		3.0 5.6	9.	3.7	7 2.0		109	1.0	76.0		0:0	0:0	0.0	5.6		0.0	0.0	0:0	0:0	3.4		0.0	1.8	0:0	0.0	5.7	7 5.9		
Avera	Average in the trial	trial	7.4	7.4 7.4 7.4		8.3 7.	7.2 71.6	9.	7.4	4 6.8		258.2	9.7 2	152.1		13.8	19.3	1.4	23.8		25.8	14.6	14.8	8.5	40.5		11.7	14.1	10.2	23.8	17.9	.9 20.0		
Ĭ	'N1 damage in the trial	n the trial	9.0	8.9	8.2 8.	8.6 8.0	8.0 75.	75.5	9.0	0.8.0		258.5	9.0	164.5		24.8	15.6	1.5	30.2	_	31.4	17.3	12.5	10.5	1.1		6.3	12.5	8.7 4	47.3	12	12.3 17.3		
Prom	Promising level		က	m	_(,)	3	3 1(9	က	m		20	3	20		0	0	0	0		0.0	0.0	0:0	0.0	2.0		0.0	5.0	0:0	5.0	0:0	0.0		
Nop	No promising		33	_(,)	31	17 19	19 2	2	0	2		0	42	0		7	22	83	0		_	88	159	2	_		_	30	166	35	21	188		

*PH- mixed population of BPH &WBPH; Kul- 10BPH:1WBPH, GNV- 1BPH: 1.6 WBPH: 1 WBPH:

Data from PNT for BPH & WBPH; MNC for GM; MNC, CHP, GNV, ADT, CHN, CHP, JDP, KJT, NVS, for SBDH; ADT, JDP, KJT, GNV, MNC, NVS, for SBWE; ADT, JDP, KJT, MNC, NVS, GNV, for LF; JDP for WM; GGT for GB; RNR & JDP, ADT, CHN for WM; - not considered for analysis due to low pest pressure

Valid insect pest reaction considered for analysis in NSN 2, kharif 2022

Insect pest	Reaction			Locs	Location			Total test
BPH	용	IIRR	CBT	LDN	PNT	MND	MND	9
WBPH	용	IIRR	CBT					2
PH*	Field	GNV	MTU	KUL				3
GM	Field	CHP	JDP	ADT	GNV			4
SBDH	Field	GGT	MLN	NVS	PNT	PNT		2
SBWE	Field	CHN	GGT	NVS	PNT			4
느	Field	KUL	MLN					2

Table 2.1.8 Performance of most promising cultures to insect pests in NSN Hills, Kharif 2022

Entry No. No. 21 Vivekdhan 86 (NC) 30 28887 85 30518 116 Aganni 101 HR 12 104 Nidhi		•	IIKK PNI CBI LDN BPH IIKK	3	ב ב	- D			1		:			1		:	1			i					
	Deig	G	В В	Н	H H	H NPT	당	퓬	NPT	91DT	NPT	68DT	NPT	90DT	97DT	113DT	NPT	97DT	80DT	NPT	74DT	NPT	45DT	NPT	NPT
	near		BPH BPH BPH	H BP	H BPH	H 4	WBPI	WBPH WBPH	1 2	BPH + WBPH	-	SBDH	-	SBWE	SB	SBWE	က	느	느	2	GB	_	Gr.H	_	15
			DS DE	DS DS	S DS	(^	SO	SO		DS		HO%		%WE	MDT	%WE		%DL	% DL		%DG		%DL		
	(NC)	_	1.9 5.7	9.9 2	6 8.3	3	6.2	8.8	0	9.0	0	≨	0	3.4	9.6	4.7	2	21.2	19.4	0	0.09	0	6.5	0	က
	VL 32558		1.5 7.8	8 5.2	2 3.2	-	6.7	7.2	0	9.0	0	¥	0	3.4	18.5	6.3	_	14.8	17.5	-	30.0	0	7.4	0	3
	VL 32850		5.7 9.0	0 5.2	2 8.4	0	8.9	3.0	-	9.0	0	26.7	0	3.5	0.0	24.1	2	18.2	33.2	0	30.0	0	10.6	0	3
		6	9.0 2.0	0.8 0.	.0 3.2	-	9.0	2.0	0	GF	0	9.6	_	9.8	0.0	2.1	2	18.5	13.7	-	¥	0	10.0	0	2
		2	2.1 8.0	0.89	9 7.8	7	6.4	8.0	0	9.0	0	26.5	0	3.4	8.3	11.0	_	24.0	13.3	_	¥	0	9.6	0	က
		9	6.1 9.0	0 7.4	.4 8.3	3	9.0	8.2	0	9.0	0	29.5	0	11.9	0.0	4.5	2	18.2	13.3	-	40.0	0	9.8	0	3
120 Pusa Basmati 1	1.1	9	6.6 2.2	2 8.8	8. 7.9	1	9.0	7.8	0	7.0	0	67.2	0	9.6	23.1	0.0	_	20.0	14.7	-	¥	0	10.6	0	3
119 PTB 33			1.2 2.4	3.0	.0 2.8	4	4.4	5.3	0	3.0	_	29.2	0	9.4	6.3	32.7	0	18.8	15.3	0	¥	0	10.6	0	2
121 RP 2068-18-3-5	3-5		1.6 8.2	2 3.2	2 2.8	3	6.2	3.7	0	9.0	0	31.2	0	6.9	18.2	6.3	0	16.4	12.6	-	¥	0	10.3	0	3
Total entries tested		7	124 12	124 123	23 122	2	124	123		121		22		124	124	124		124	123		94		124		
Max. damage in the trial	rial	6	9.0	9.0	.0 8.8	~	9.0	9.0		9.0		67.2		17.0	27.8	81.6		27.3	38.7		78.0		10.9		
Min. damage in the trial	ial		1.2 1.6	6 3.0	.0 2.8	~	1.6	3.0		7.0		9.6		3.2	0.0	0.0		10.0	12.6		20.0		5.3		
Ave. damage in the trial	al	7.	7.2 7.7	7 7.0	0.7.4		7.7	7.1		9.0		26.1		7.5	13.4	14.2		19.7	22.2		42.8		6.8		
Promising level		.,	3	3	₃		က	က		3		10		2	0	2		15	15		10		2		
No. promising			5 4	د	4		_	2		0		2		0	18	20		10	14		0		0		

Data from PNT for BPH & WBPH; LDN for SBDH: GLH from CHT; rice skippers from KDW skipper from Khudwani not considered for analysis due to low pest pressure

Valid insect pest reaction considered for analysis in NSN hills, kharif 2022

Insect pests	Reaction	ľ	Locations/ Tests	Tests		Tests
BPH	ᆼ	IIRR	PNT	CBT	PDN	4
WBPH	H5	IIRR	CBT			2
BPH+ WBPH	H5	MTU				_
SBDH	FR	PNT				_
SBWE	FR	LDN	NTW	PNT		3
H	FR	MLN	LHO			2
GB	FR	CHT				←
Grh	FR	AHD H				<u>_</u>

Table 2.1.9 Performance of the most promising cultures against insect pests in NHSN, kharif 2022

		IIRR C	ET L	IIRR CBT LDN MND	ND MN	MND BPH	IIRR	CBT	WBPH	MTU	품	CHN	PNT	SBDH	CHN	GGT	LDN	NWG	PNT	PTB	SBWE	NWG	PTB	٥ ٣	Overall
NHN	N FEI N	ВРН ВРН		BPH B	BPH BPH	H NPT	WBPH M	WBPH	NPT	표	NPT	SBDH (SBDH	NPT	SBWE	SBWE	SBWE	SBWE	SBWE	SBWE	NPT	5	<u>د</u> ۳	NPT	NPT
Š.		표	Н	면 문	GH 63DT)T	퓽	퓽	2	90DT	-	50DT	70DT	7	Pr.h	TO96	90DT	Pr.h	106DT	90DT	9	70DT	75DT	7	9
		DS	DS	DS	DS %HB	耍	OS	SO		DS		HO%	MD%		WE%	%WE	%WE	% WE	%WE	%WE		%DL	%DL		
2	30602	7.3	3.8	3.0	3.0 17.2	.2	5.6	4.8	0	7.0	0	10.2	23.7	0	11.3	10.4	13.2	15.4	3.9	0.0	2	20.7	9.8	0	4
31	30624	<u>ი</u>	9.0	8.6 7	7.0 62.5	.5	8.3	6.2	0	9.0	0	0.0	17.9	-	5.6	9.4	7.7	4.3	13.7	1.5	က	21.6	7.2	0	4
92	30594	2.3	2.8	3.0	3.0 25.0	0.	9.0	3.8	0	7.0	0	18.6	28.4	0	10.8	13.3	6.9	14.0	13.1	10.1	0	29.1	10.9	0	4
13	30609	4.7	8.7	9.0	5.0 38.1	0	8.0	5.2	0	9.0	0	8.8	30.6	0	9.5	3.7	13.6	2.8	4.7	9.4	က	17.0	2.5	0	က
26	30620	5.4	5.2	8.3	1.0 5.0	0	9.0	5.4	0	9.0	0	8.5	10.0	0	0.0	8.1	13.6	11.8	7.8	2.2	2	17.0	8.7	0	က
96	30597	2.2	2.0	3.0	3.0 25.0	.0 .0	9.0	4.6	0	9.0	0	22.3	35.4	0	12.0	12.9	12.5	2.8	22.5	11.8	0	31.9	12.9	0	က
66	HR-12	8.4	7.2	9.0	7.0 70.6	0 9:	9.0	7.8	0	9.0	0	23.5	28.1	0	9.6	8.9	3.8	11.8	12.3	0.0	က	18.4	12.6	0	က
	Checks																								
117	PTB33	6.1	2.9	3.0	3.0 29.6	6.	4.5	2.8	_	3.0	_	12.0	26.4	0	19.0	21.6	10.4	11.7	33.9	뉟	0	25.4	9.6	0	9
119	RP 2068-18-3-5	7.8	4.3	7.4	1.0 13.5	.5	6.2	2.8	0	3.0	_	1.8	37.0	0	11.1	22.2	6.1	12.1	3.1	F	-	22.4	13.1	0	4
Total	Total tested	120	119	120 1	121 121	<u>-</u>	120	119		121		122	88		122	122	122	121	121	119		121	122		
Max	Max damage in the trial	6	တ	ത	9 100	0	ത	6		9.0		24.2	6.77		21.0	32.1	17.4	34.0	100.0	43.8		45.1	23.8		
Min.	Min. damage in the trial	6:0	2.0	3.0	1.0 5.0	0	1.5	2.8		3.0		0.0	8.7		0.0	0.0	3.6	1.9	0.0	0.0		12.6	3.3		
Ave. c	Ave. damage in the trial	7.3	6.9	7.9 7	7.0 68.7	7.	7.8	6.5		8.9		10.2	27.1		10.0	15.3	10.4	11.4	14.8	12.7		22.7	9.0		
Dam	Damage in TN1	6.5	8.1	5.5	6.0 61.1	Ψ.	0.9	9.0		0.9		8.2	44.2		7.0	14.5	6.1	9.7	24.4	21.9		2.0	2.0		
Prom	Promising level	က	က	m	3		က	က		က		0	0		2	2	2	2	2	2		2	0		
No.	No. promising	80	ო	,	11 0		_	_		7		4	0		∞	_	0	0	=	31		0	0		
- - -	*DU mixed seculation of DDU and WDDU. Civid secretion of DDUS WDDU	VPDU.	101	roopi	of DE	JUN VIE	DDL from		ONT. CM from DTD. CDDH from CHNI MNIC	TD C	S CD	The from	NI C		C/VIV	GTO	TOO	I DN CD	VE fro	MINIO	CDIVIE from MANIO. I E domogo from	0000	from C	NIC	TOO

^{*}PH- mixed population of BPH and WBPH; Field reaction of BPH& WBPH from PNT; GM from PTB; SBDH from CHN, MNC, NWG, PTB, GGT, LDN, SBWE from MNC: LF damage from CHN, GGT, LDN, MNC; WM, BB & CW damage from PTB were not considered due to low pest pressure.

Valid insect pest reaction considered for analysis in NHSN, kharif 2022

Insect pests	Reaction	Locations / tests	s / test	S				Total tests
BPH	H9	IIRR	CBT	NGT	MND	QNW		5
WBPH	H9	IIRR	CBT					2
PH	FR	MTU						1
SBDH	FR	CHN	PNT					2
SBWE	FR	CHN	GGT	LDN	NWG	PNT	PTB	9
LF	FR	NWG	PTB					2

b) NRRI-National Screening Nurseries

AT NRRI Cuttack, National Screening Nurseries (NSN) consisting of two trials *viz.*, National Screening Nursery-1 (NSN1) and National Screening Nursery-2 (NSN2) were constituted this year with entries from Early Direct Seeded, Rainfed Shallow Lowland, Semi Deep Water and Deepwater rices. NSN1 trial constituted with 51 entries (41 AVT entries along with 10 insect checks) was evaluated at 18 locations. NSN2 trial comprised of 156 entries (146 IVT entries plus 10 insect checks) was evaluated at 16 locations. The valid data of the reaction of entries in the above said trials are presented insect pest wise:

Brown Planthopper:

NRRI-NSN1: IET29032 and IET31288 were found promising for brown planthopper in 1 test in greenhouse reaction at LDN of the 3 valid tests. PTB-33 and RP2068-18-3-5 exhibited resistant reaction (damage score ≤3 on SES scale) in 2 tests each.

NRRI-NSN2: IET31232 and IET31221 were promising in 2 locations out of the 3 tests. RP2068-18-3-5and PTB-33 exhibited resistant reaction in all three 3 tests.

White-backed Planthopper:

NRRI-NSN1: None of the entries were found promising at CBT including the resistant checks PTB-33 and RP2068-18-3-5.

NRRI-NSN2: The following IET lines *viz.*, 31280, 31221, and 31281 were found promising in one glasshouse screening test at CBT including the resistant checks PTB-33 and RP2068-18-3-5.

Mixed population of Planthoppers:

NRRI-NSN1: None of the entries were found promising in field evaluation at GNV including the resistant checks PTB-33 and RP2068-18-3-5. The average population in the trial was 289 hoppers/10 hills.

NRRI-NSN2: None of the entries were found promising in field evaluation including the resistant checks PTB-33 and RP2068-18-3-5 in both the locations tested. The average population in the trial was 289 hoppers/10 hills at GNV and 196 hoppers/10 hills at Kaul.

Gall Midge:

NRRI-NSN1: IET27538 and CR Dhan 506 recorded nil damage against gall midge at Sakoli. Aganni and W-1263 recorded nil damage in at Sakoli.

NRRI-NSN2: The following IET lines *viz.*,31272, 26741(R), 31206, Swarna Sub 1, 31229, 31190 and 31192 were found promising in one field reaction at JDP where average damage was 11.0% SS. Whereas in GNV average damage was 19.0% SS and IET lines 31260, 31214, 31218, 31233, and 31176 were found promising at promising level of 5% SS.

Stem borer:

NRRI-NSN1: CR Dhan 506 was promising against stem borer during vegetative and reproductive phase in 2 out of the 3 tests.

NRRI-NSN2: IET31283 had nil white ear damage at Aduthurai during reproductive phase; however, it requires glasshouse study for confirmation.

Leaf folder:

NRRI-NSN1: Leaffolder incidence was low at the evaluating centers (PUSA and Nawagam) and the damage level was <10% DL.

NRRI-NSN2: IET31161 and IET31200 were promising against leaf folder in Aduthurai and Kaul, respectively. Average leaffolder damage was 44% and 19% DL at Aduthurai and Kaul, respectively.

Hispa:

NRRI-NSN1: In the field evaluation at Raipur, hispa incidence at 70 DAT was recorded and the average damage in the trial was 7.0% DL.

Note: Since all these breeding lines have not been specifically developed for insect pest resistance; all these identified promising entries need to be further tested and validated for their resistance against individual pests in specific screening program under suitable pest pressure for further use in the resistant breeding program.

Overall reaction:

NRRI-NSN1: Evaluation of 51 entries in NSN-1 in 4 greenhouse and 13 field tests against 7 insect pests in 17 valid tests helped in identification of 4 entries as promising in 4-5 tests against 2-3 insect pest damages **(Table 2.1.8.1)**. Resistant checks PTB 33 and RP 2068-18-3-5 were resistant to BPH in the valid tests. W1263 and Aganni were promising against gall midge.

NRRI- NSN2: Evaluation of 166 entries in NSN-2 in 4 greenhouse and 8 field tests against 5 insect pests in 12 valid tests helped in identification of 3 entries as promising in 2- 4 tests against 1-2 insect pest damages **(Table 2.1.8.2)**. Resistant checks PTB 33 and RP 2068-18-3-5 were resistant to BPH in the valid tests. W1263 and Kavya were promising against gall midge.

Table 2.1.10 Performance of most promising cultures against insect pests in NRRI-NSN1, Kharif 2022

SI.	IET No.			Nι	ımber of	promising to	ests (NPT)		
No		BPH	WBPH	PH	GM	SBDH	SBWE	Hispa	Overall NPT
		3	1	1	4	3	4	1	17
1	31288	1	0	0	1	1	1	0	4
2	29032	1	0	0	1	1	1	0	4
3	29026	0	0	0	1	1	1	1	4
4	CR Dhan 506	0	0	0	1	2	2	0	5
Resis	stant checks								
PTB-	33	2	0	0	1	1	0	0	4
RP20)68-18-3-5	2	0	0	0	1	0	0	3
Agan	ni	0	0	0	2	1	0	0	3
W-12		1	0	0	1	0	1	0	3

^{*} JDP, PSA, WGL for BPH; WGL for WBPH; CHP, JDP for BPH; CHP, TTB for GM; GNV, MSD, LDN, JDP, RNR, WGL, TTB, RPR, PSA, NWG, MNC for LF; GNV, CHP, JDP, LDN, MSD, MNC, NWG, RNR, WGL, TTB for SBDH; GNV, CHP, LDN, RNR, PSA, WGL for SBWE; TTB for CW; RNR for WM; MSD for GB; JDP for GLH not considered for analysis due to low insect pest pressure.

Valid NSN1 data from locations considered for analysis

Insect pest			Locations	
BPH	CBT	GNV	MND	LDN
WBPH	CBT	-	-	-
PH	-	GNV		
Gall midge	JDP	GNV	SKL	WGL
SBDH	RPR	PSA	SKL	-
SBWE	RPR	MSD	SKL	TTB
Hispa	RPR	-	-	-

Table 2.1.11 Performance of most promising cultures against insect pests in NRRI-NSN2, Kharif 2022

SI. No	IET No.			Number	of promising	tests (NPT)		
		BPH	WBPH	PH	GM	SBWE	LF	Overall NPT
		3	1	2	2	2	2	12
1	31232	2	1	0	0	0	0	3
2	31221	2	1	0	0	0	0	3
3	31283	0	0	0	0	1	0	1
Resist	ant checks							
PTB-3	3	3	1	0	0	0	1	5
RP206	8-18-3-5	3	1	0	1	0	0	5
Agann	i	2	0	0	1	0	0	3
W-126	3	0	1	0	0	0	1	2

^{*}JDP for BPH; CHP for GM; ADT, GNV, CHP, JDP, GHT, MNC for SBDH; CHP, NVS, MNC, GNV, GGT for SBDH; GNV, JDP, GGT, NVS, MNC for LF; ADT for WM, JDP for GLH; GGT for GB not considered for analysis due to low insect pest pressure

Valid NSN2 data from locations considered for analysis

Insect pest		Locations	
BPH	CBT	LDN	MND
WBPH	CBT	-	-
PH	-	GNV	KUL
Gall midge	JDP	GNV	-
LF	ADT	-	KUL
SBWE	ADT	GGT	-

2.2. INSECT BIOTYPE STUDIES

Variation in the response of host plant/gene differentials to different pest populations in endemic areas were monitored for two major insect pests *viz.*, planthoppers and gall midge through Insect biotype studies comprising of four trials a) Gall midge biotype monitoring trial (GMBT) b) Planthopper Special Screening trial (PHSS) c) Gall midge population monitoring trial (GMPM) and d) Planthopper population Monitoring trial (PHPM).

The results of the observed virulence pattern of gall midge populations during *kharif* 2022 in GMBT trial are discussed below:

a) Gall midge biotype monitoring trial (GMBT)

Gall midge biotype trial was constituted with a set of 19 gene differentials categorized into 4 groups, along with the susceptible check TN1 in the fifth group and three lines with *Gm4*, *Gm8* and *gm3* genes in the background of Improved Samba Mahsuri and INRC 17470 in the 6th group. The trial was conducted at 18 locations. The reaction of the differentials was observed at both 30 DAT and /or 50 DAT in terms of percent plant damage and silver shoot (%). Data with >50 % plant damage in TN1 at a location was considered as valid. Though gall midge incidence was recorded at Brahmavar, Maruteru, Nellore, Titabar, Pattambi, Ranchi, and Raipur, the severity was low. At Pattambi the trial was also conducted in farmer's field at Ongallur and observations were recorded at both 30 and 50 DAT. No data was received from Cuttack. The results of the evaluation from the valid data from research stations at 11 locations in 12 tests are summarized in **(Table 2.2.1)** and discussed as under.

Telangana state

IIRR: The populations at **IIRR** collected from Medchal were maintained in greenhouse on TN1. All the differentials were promising with 0-10 % DP except Abhaya.

Jagtial: Earlier the populations at **Jagtial** conformed to the typical pattern of R-S-R-R-S for biotype 3 but this year, only differentials with *Gm8* gene (Aganni, INRC 3021) were promising.

Warangal: Aganni and INRC 3021(with Gm8), RP5923 (gm3) and the new donor INRC 17470 exhibited $\leq 10\%$ DP at Warangal research station and also in the farmer's field which is 30 km away from research farm. But Abhaya was promising only at the research station. It is interesting to note that the virulence on Gm11 and gm3 is less in farmers' field as compared to the reaction in the research station.

Andhra Pradesh

Ragolu: Differentials of Group 3 and 4 showed resistance to gall midge at this location which is typical reaction pattern (S-S-R-R-S) of biotype 4.

Maharashtra:

Sakoli: This year only Aganni and INRC 3021 (both with Gm8) and INRC 17470 recorded nil damage at this location.

Karnataka

Gangavathi: Only INRC 3021 recorded nil damage while ARC 6605, and Aganni recorded very low silver shoot damage.

Chattishgarh

Ambikapur: Kavya and W1263 (*Gm1*); Aganni and INRC15888 (*Gm8*) recorded <10%DP in the field reaction at this location.

Jagdalpur: Reaction at Jagdalpur were grouped as R-S-S-R-S-S with exceptions of Madhuri L9 in Group 2 and RP 5022-21 in group 4 differentials.

Odisha

Chiplima: All differentials showed susceptibility except W1263 (*Gm1*), RP 2068-18-3-5, RP5923 (*gm3*); Aganni, INRC 3021, INRC15888 and RP5925-24 (*Gm8*), Madhuri L9 (*Gm9*) and INRC17470 which had<10 % plant damage. Variation in the reaction of the other donors was observed within the groups.

Tamil Nadu

Aduthurai: The field reaction at this location conforms to the pattern of R-R-R-S of biotype 1 with low damage (20% DP) in ARC5984 and Madhuri L9.

Kerala

Moncompu; All the differentials except Kavya, RP5922-21(Gm1); RP2068-18-3-5 & RP5923-22 (gm3), MR1523 (Gm11) recorded nil damage.

Overall reaction: Evaluation of the gene differentials in one greenhouse and 12 field tests at 11 locations identified Aganni (Gm8), INRC 3021(Gm8) and INRC17470 as promising in 9-11 of the 12 valid tests. INRC15888 and RP5925-24 were promising in 7 tests. W1263 (Gm1) was promising in 6 of 12 valid tests. The results also suggest that donors with Gm8 and Gm1 genes confer resistance to gall midge across the test locations.

b) Planthopper Special Screening Trial (PHSS)

A set of 17 primary sources of BPH resistance with some sources having known resistance gene(s) was evaluated at thirteen locations *viz.*, IIRR, Aduthurai, Coimbatore, Cuttack, Gangavathi, Ludhiana, Mandya, Maruteru, New Delhi, Pantnagar, Raipur, Rajendranagar, Warangal in 14 tests in the greenhouse in Standard Seed box Screening Test (SSST) with 1 to 4 replications. At Coimbatore,

the sources were screened for both brown planthopper and whitebacked planthopper reaction. The special screening tests such as days to wilt to know the tolerance mechanism, feeding preference test by measuring honeydew excretion and nymphal survival were conducted at Pantnagar, Coimbatore and Maruteru. Based on SSST results presented in (Table. 2.2.2). It was observed that two gene differentials viz., PTB 33 (with bph2 + Bph3 + Bph32 + unknown factors) and **RP 2068-18-3-5 (with** *Bph33t* gene) were **promising** in 12 and 13 tests respectively out of 13 tests at 12 locations. Babawee with bph4 gene performed better at 5 locations while T12 (with bph7 gene) gene performed better in 4 locations. Three gene differentials viz., ARC 10550 with bph5 gene, Rathu Heenati (with Bph3+Bph17 genes) and Swarnalatha with Bph6 showed low damage at three locations each. One gene differential viz., ASD7 with bph2 gene performed better at two locations only. Five gene differentials viz., IR-65482-7-2-216-1-2-B with Bph18(t)) gene, MUTNS 1, OM 4498, Milyang 63 with unknown genetics and Pokkali with bph9 gene showed promising reaction at one location each. Four gene differentials viz., Chinasaba with bph8 gene, IR 36 (with bph2 gene), IR 64 (with Bph1+ gene) and IR-71033-121-15 with Bph20/21 genes showed susceptible reaction at all test locations.

At Pantnagar, lowest nymphal survival was observed in PTB33 followed by IR 64, ASD7, ARC10554 and IR 36 and highest nymphal survival was observed in RP2068-18-3-5 followed by OM 4498. T12 took more days to wilt followed by Swarnalatha and IR-71033-121-15. Honeydew excretion was the lowest in PTB33 followed by Chinsaba and ASD 7 and it was highest in T12 followed by Swarnalatha and IR-71033-121-15. In TN1 the average honeydew excretion was 175.9 mm2. At Coimbatore, lowest honeydew excretion was observed in ARC 10550 followed by RP 2068-18-3-5, PTB 33 and Pokkali whereas highest honeydew excretion was observed in TN1 followed by ASD7. At Maruteru, highest honeydew excretion was observed in IR-71033-121-15 followed by ASD7 and MUTNS1 while lowest honeydew excretion was observed in RP 2068-18-3-5 followed by PTB33 and Ratu Heenati. Nymphal survival data from Maruteru was not considered as the values were very low.

Among the 17 gene differentials evaluated, two differentials viz., **PTB 33** (with bph2 + Bph3 + Bph32+unknown factors) and RP 2068- 18-3-5 (with Bph33t gene) were promising in 12 and 13 tests respectively at 12 test locations. Swarnalatha with Bph 6 gene performed better in 4 locations. Six gene differentials viz., T12 (with bph7 gene), Rathu Heenati (with Bph3+Bph17 genes) ASD 7 with bph2, Babawee with bph 4 gene, IR 36 (with bph2 gene) and IR 64 (with Bph1 gene) showed low damage at two locations each. Two gene differentials viz., Chinasaba with bph8 gene and Milyang 63 with unknown genetics performed better at one location each (Table.2.2.2).

Table 2.2.1 Reaction of gene differentials to gall midge populations in GMBT, kharif 2022

ble 2.2.1	Reaction or g	able 2.2.1 Reaction of gene differentials to gall midge populations in GMB1, Knarif 2022	gall midge	population	NIS IN GIM	BI, Knari	2077			!					4	:
				IIKK	ADI	ABK	H	JDP	SNV	190	MNC	KGL	SKL	WGL	WGL\$	Overall NP1
Group	Entry No.	Differential	Gene	GR	50DT	50DT	50DT	50DT	50DT	50DT	50DT	50DT	50DT	51DT	50DT	12
				% DP	%DP	%DP	%DP	%DP	%SS	%DP	%DP	%DP	%DP	%DP	%DP	
_	_	KAVYA	Gm 1	0	10.0	0	20.0	0.0	35.8	100.0	33.3	40.0	20.0	92.0	20.0	4
	2	W 1263	Gm 1	0	0.0	0	0.0	0.0	15.3	95.0	0.0	0.09	30.0	0.06	95.0	9
	3	ARC 6605	(2)	0	0.0	80	30.0	40.0	1.6	95.0	0.0	30.0	100.0	85.0	20.0	3
=	4	PHALGUNA	Gm 2	0	0.0	100	0.09	80.0	16.4	100.0	0.0	30.0	100.0	95.0	20.0	3
	2	ARC 5984	Gm 5	0	20.0	20	20.0	90.0	19.4	100.0	0.0	30.0	100.0	100.0	40.0	2
	9	DUKONG 1	Gm 6	0	0.0	20	20.0	80.0	68.5	100.0	0.0	20.0	100.0	100.0	92.0	3
	7	RP 2333-156-8	<i>Bm 7</i>	2	0.0	09	40.0	30.0	52.3	100.0	0.0	30.0	100.0	75.0	22.0	3
	80	MADHURI L 9	6 W 9	2	20.0	09	10.0	0.0	35.3	100.0	0.0	20.0	100.0	100.0	0.39	4
	6	BG 380-2	Gm 10	0	0.0	09	30.0	90.0	48.5	100.0	0.0	20.0	100.0	78.9	68.4	က
=	10	CR-MR 1523	Gm 11	0	0.0	20	70.0	10.0	50.1	75.0	13.3	0.0	100.0	50.0	2.0	5
Λ	11	RP 2068-18-3-5	8 mg	0	0.0	20	10.0	10.0	40.1	80.0	26.7	0.0	38.5	0.09	2.0	9
	12	ABHAYA	6m 4	30	10.0	20	30.0	10.0	45.8	40.0	0.0	0.0	100.0	55.0	35.0	4
	13	INRC 3021	8 <i>W</i> 5	0	0.0	20	10.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	11
	14	AGANNI	<i>Gm</i> 8	0	0.0	10	0.0	0.0	3.9	0.0	0.0	0.0	0.0	5.0	0.0	11
	15	INRC 15888	<i>Gm</i> 8	0	0.0	0	0.0	0.0	38.4	100	0.0	0.0	26.3	80.0	20.0	7
	16	RP 5925-24	<i>Gm</i> 8	0	0.0	40	0.0	0.0	34.6	100	0.0	0.0	40.0	50.0	9.6	7
	17	RP 5922-21	6m 1	0	0.0	40	40.0	80.0	36.6	100	13.3	0.0	9.68	85.0	33.3	3
	18	RP 5923	gm 3	0	0.0	30	0.0	20.0	34.5	20.0	6.7	0.0	63.2	25.0	15.0	5
	19	INRC 17470	ż	0	0.0	40	0.0	0.0	24.3	30.0	0.0	0.0	0.0	5.0	0.0	6
۸	70	TN1	none	20	20.0	90	90.0	100	57.4	100	53.3	0.09	0.06	95.0	78.9	0
Total Tested	ted			20	20	20	20	20	20	20	20	20	20	20	20	
Max. in the trial	e trial			20	20	100	06	100	68.5	100.	53.3	0.09	100	100	92.0	
Min. dam	Min. damage in the trial			0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	
Ave. dam	Ave. damage in the trial			9.6	5.5	46	25.5	32	32.9	8.92	7.3	18.5	64.9	6.99	39.8	
Damage in TN1	in TN1			70	20	90	06	100	57.4	100.	53.3	0.09	0.06	95.0	78.9	
Promising level	y level			10	10	10	10	10	1	10	10	10	10	10	10	
No. promising	sing			18	17	4	6	11	_	2	15	10	3	3	9	
farmers field	PI															

Table 2.2.2 Performance of promising gene differentials in (PHSS) -kharif 2022

						W.	Reaction of gene differentials against planthopper	of gene (lifferent	ials aga	inst plaı	nthoppe	j.				
Entry No.	Designation	Gene					Br	Brown planthopper	ıthoppe	_						Whitebacked planthopper	Total NPT
			IIRR	ADT	CBT	CTC	CNV	LDN	MND	MTU	NDL	PNT	RPR	RNR	MGL	CBT	(14)
-	ASD7 (Acc 6303)	bph2	8.1	8.3	6.4	9.0	3.7	7.7	7.0	3.0	9.7	8.3	1.6	9.6	8.2	8.2	2
2	Babawee	bh4d	6.7	6.3	5.2	8.7	1.0	0.9	5.0	1.7	6.4	9.8		4.8	8.4	2.8	2
2	ARC 10550	54dq	9.5	9.0	4.3	4.4	4.3	8.0	7.0	9.0	0.9	7.4	1.8	6.7	6.5	8.9	3
16	Ratu Heenati	Bph3+Bph17	7.2	8.3	7.2	9.0	3.7	9.6	2.0	9.0	5.5	7.4		4.8	6.7	4.6	3
17	RP 2068-18-3-5	Bph33(t)	2.2	3.0	1.3	3.0	3.5	2.8	3.0	2.9	2.3	2.5	1.0	4.6	4.1	3.8	13
18	Swarnalatha (Acc33964)	Bph6	6.5	8.3	5.8	9.0	3.7	6.9	5.0	9.0	6.7	9.9	1.9	7.8	8.3	5.0	ဗ
19	T12	24dq	8.1	8.3	7.2	0.6	1.7	5.9	5.0	7.7	3.5	7.5	1.6	8.7	7.7	9.0	4
22	PTB33	bph2+Bph3+	1.7	3.3	5.0	2.8	1.7	NG	1.0	3.1	3.2	3.8	1.6	4.3	3.1	9.0	12
Promis	Promising level		5.0	2.0	5.0	2.0	3.0	5.0	2.0	2.0	2.0	2.0	3.0	2.0	5.0	5.0	
No. of	No. of promising entries		3.0	3.0	4.0	3.0	8.0	2.0	7.0	2.0	4.0	3.0	0.9	5.0	3.0	5.0	

c) Gall midge population monitoring (GMPM)

This trial has been designed to complement the study on characterization of gall midge biotypes. Reaction of single gall midge female to a set of three gene differentials viz., W1263 (Gm1), Aganni(Gm8), Akshayadhan (Gm4 + Gm8) and Purple variety (no resistance gene but highly susceptible) would generate information on the virulence pattern of the gall midge population. This year the trial was conducted at six locations viz., Gangavathi, Moncompu, Pattambi, Jagtial, Ragolu and Warangal and the results are presented in Table **2.2.3** and discussed location wise.

Gangavathi: Of the 250 female insects tested, 92% were virulent. Of these, 86.95% were virulent on Purple (no gene), 26.98% on W1263 (*Gm1*), 35.22% on Aganni (*Gm8*) and 15.22% on Akshayadhan (*Gm4+Gm8*). The sex ratio was very much skewed towards females in all the test entries and male progeny percentage was very high in W1263 as compared to other entries. These results support the reaction of these differentials at Gangavathi in GMBT trial except for recording of high virulence on Aganni in this test.

Moncompu: Single female progeny test was done with 50 females of which 92 % were virulent. Of the virulent insects, only 8.7% were virulent on purple (no gene), 28.3% on W1263 (Gm1), 73.9% on Aganni (Gm8) and 76.09 % on Akshayadhan (Gm4+Gm8). Though the severity of pest was low in GMBT trial, it can be deduced that under favourable conditions there can be an upsurge in the gall midge infestation at this location.

Pattambi: At this location, 207 insects were tested and all were virulent. Low virulence (22.7%) was observed on W1263 (Gm1) with 11.9 %SS. The other two differentials and purple were highly susceptible with more than 65% of the females being virulent. High percentage of male progeny was recorded in all the differentials (30.5-35.2%). This is in line with the results of the GMBT trial where Gm1 gene holds promise but virulence on other differentials need to be monitored with caution.

Jagtial: Of the 210 female insects tested, only 71.4% were virulent. on Purple (no resistance gene) 77.3% were virulent, 23.2% on W1263 (Gm1), and none were virulent on Aganni (Gm8) and Akshayadhan (Gm4+Gm8). The sex ratio was favorable in all the differentials. Male progeny was 33.74 % on W1263 as compared to 40.4% on purple. These results support the reaction of these differentials at Jagtial in GMBT trial suggesting Aganni and Akshayadhan (Gm4+Gm8) as promising donors at this location.

Ragolu: At this location, 250 single females were tested and the results suggest that the population was highly virulent 60.96% on the purple variety and the two gene differentials, W1263 (20.91%) and Akshyadhan (*Gm4+ Gm8*). None were virulent on Aganni. In all the test entries, the sex ratio was 1:1.

Warangal: At this location, 250 insects were tested. Low virulence of tested females was recorded on Aganni (6.7%). Sex ratio was skewed towards females in all the test entries. Damage was <10% SS in Aganni and Akshayadhan (*Gm4+ Gm8*). Male progeny (%) was very high in Aganni (41.7%). The results are similar to the reaction pattern observed in GMBT trial conducted this year at this location.

Studies on virulence composition of gall midge populations in GMPM trial conducted at six locations across four southern states in India suggest that Aganni (Gm8) holds promise at Jagtial, Warangal and Ragolu. Low virulence against W1263 (Gm1) was observed at Gangavathi, Pattambi and Warangal. Akshayadhan (with Gm4 + Gm8) was promising at Jagtial and Warangal. However, a close monitoring of the virulence pattern in endemic areas is important.

d) Planthopper Population Monitoring Trial (PHPM)

The planthopper population monitoring trial (PHPM) was conducted to monitor the virulence pattern of brown planthopper populations against selected donors by releasing a single brown planthopper female and testing its progeny. This trial was conducted at six locations *viz.*, IIRR-Rajendranagar, Coimbatore, Gangavathi, Ludhiana, New Delhi and Pantnagar. Five gene differentials *viz.*, PTB 33 (*bph 2, 3 and 32 genes*), RP 2068-18-3-5 (*bph 33t* gene), RP Bio4918-230S (*bph 39 and 40* genes) and Salkathi (two QTLs *qBph4.3* and *qBph4.4*) were tested along with susceptible variety TN1. The number of nymphs hatched from each gene differential, number of adults emerged, their sex and macroptery were recorded on each gene differential and the results are presented here. The data from Gangavathi is not considered (**Table 2.2.4**).

IIRR: The females laid eggs on all the gene differentials and the total number of nymphs hatched/female were 137 and the egg period was 9 days. Number of nymphs hatched were more on TN1. Nymphal duration was the lowest on TN1 (12.74 days) and in PTB33, it was the highest (17.96 days). The sex ratio was in favour of males in all gene differentials except in TN1 which had more females. The winged insects (66.0%) outnumbered the wingless insects (34.0%) in all the gene differentials except in TN1.

Coimbatore: All the females laid eggs on TN1 whereas 40.0-60.0% females laid eggs on RP Bio4918-230S, RP 2068-18-3-5 and PTB 33. The total number of nymphs hatched /female were 63.2. The nymphs hatched were highest on TN1 and lowest on RP 2068-18-3-5. The incubation period was 14.8 days, the nymphal survival ranged from 54.5-100% and was highest on RP Bio4918-230S.

Ludhiana: All the females laid eggs on all the gene differentials and nymphs hatched were highest on TN1 and lowest on PTB33. The total number of nymphs hatched /female were 205.7. The egg period ranged from 9 days (TN1 and Salkathi) to 10 days (PTB33, RPBio4918-230S and RP2068-18-3-5). The nymphal survival was highest (99.0%) and nymphal duration was shortest on TN1 (17 days) and vice

versa in PTB33 (93.0% and 21 days respectively). Males were lowest in TN1 and sex ratio was in favour of males except in TN1. The macropterous adults were more (67.1%) than wingless adults and were more on RP 2068-18-3-5.

New Delhi: All the females laid eggs on all the gene differentials and nymphs hatched were highest on TN1 and lowest on Salkathi. The total number of nymphs hatched /female were 262. The egg period ranged from 7.5 days (TN1) to 9 days (PTB33, Salkathi). The nymphal survival was highest (76.6%) on TN1 and lowest on Salkathi (32.9%). Males were lowest in TN1 and sex ratio was in favour of females.

Pantnagar: All the females laid eggs on all the gene differentials and nymphs hatched were highest on TN1 and lowest on PTB33. The total number of nymphs hatched /female were 147. The egg period was 9 days. The nymphal survival was highest on TN1 (77.4%) and lowest in PTB33 (37.2%) and nymphal duration was 15 days. Males were lowest in RP2068-18-3-5 and sex ratio was in favour of females.

The virulence monitoring studies of brown planthopper populations using the four gene differentials revealed that at Ludhiana, brown planthopper population was more virulent than the other five BPH populations viz., IIRR-Rajendranagar, Coimbatore, New Delhi and Pantnagar in terms of virulent females which laid eggs, egg period, number of nymphs hatched, nymphal survival, and highest percentage of brachypterous adults. At all the locations, all the females were virulent except at Coimbatore.

Table 2.2.3 Virulence composition of gall midge populations in GMPM, kharif 2022

SI. No.	Location	No of females tested	Virulent females (%)	Variety	Virulent females (%) of total females virulent	%SS damage	Sex ratio of the progeny Male : Female	% Male progeny
1	Gangavathi	250	92	Purple	86.95	28	1:5.1	19.1
				W1263 (Gm1)	27	24.8	1:4.2	37.5
				Aganni (Gm8)	15.22	11.8	1:3.0	16.3
				Akshayadhan(Gm4+Gm8)	35.22	3.28	1:4.2	19.4
2	Jagtial	210	71.4	Purple	77.3	10.8	1:1.5	40.4
	-			W1263 (Gm1)	38.7	5.4	1:1.96	33.7
				Aganni (Gm8)	Not virulent	0	NA	NA
				Akshayadhan(Gm4+Gm8)	Not virulent	0	NA	NA
3	Moncompu	50	92	Purple	8.7	2	0: 4	0
				W1263 (Gm1)	28.3	8	1: 3	25.0
				Aganni (Gm8)	73.9	22	1: 1.4	41.4
				Akshayadhan (Gm4+Gm8)	76.09	29.5	1: 1.8	35.9
4	Pattambi	207	100	Purple	81.16	59.2	1:2.03	30.5
				W1263 (Gm1)	22.71	11.9	1:2.28	35.2
				Aganni (Gm8)	65.22	41.4	1:1.84	33.0
				Akshayadhan(Gm4+Gm8)	68.12	47.7	1:2.28	30.5
5	Ragolu	250	100	Purple	60.96	53.2	1:1.0	49.8
				W1263 (<i>Gm1</i>)	20.91	17.6	1:1.34	42.7
				Aganni (<i>Gm8</i>)	Not virulent	0	-	0
				Akshayadhan (<i>Gm4</i> + <i>Gm8</i>)	37.74	24.4	1:1.02	48.6
6	Warangal	250	67.6	Purple	89.9	46.2	1:2.9	25.8
	3 3 3 3			W1263 (Gm1)	82.3	36.0	1:2.4	29.3
				Aganni (<i>Gm8</i>)	7.1	1.97	1:1.4	41.7
				Akshayadhan (Gm4+Gm8)	6.5	3.27	1:3.3	21.4

Table 2.2.4 Virulence monitoring of brown planthopper populations in PHPM, kharif 2022

		_	IIRR				Coimbatore		
Gene differential	PTB33	RP2068-18-3-5	RP bio 4918-230S	TNT	PTB33	RP2068-18-3-5	RP bio 4918-230S	Salkathi	TN1
No. females released			25				10		
Virulent females (%)			100		09	20	40		100
No nymphs hatched/female	15.0	25.0	27.0	70.0	3.8	2.1	2.9		54.4
Total nymphs/female			137				63.2		
Egg period	80	80	10	10	14.8	14.8	14.8		14.8
Nymphal surival (%)	40.00	42.22	44.44	91.11	54.5	65.3	100	77.4	84.5
Nymphal duration	17.96	16.81	16.38	12.74					
Males (%)	64.29	63.49	60.32	34.19	NR	NR	NR		NR
Sex ratio	0.56F:1.0M	0.58F:1.0M	0.66F:1.0M	1.92F:1.0M	NR.	N.	N.		NR
winged females(%)	17.86	26.98	24.60	21.71	NR	NR	NR		NR
Winged males (%)	20.00	47.62	50.00	24.27	NR	NR	NR		NR
wingless females(%)	17.86	9.52	15.08	44.10	NR	NR	NR		NR
Wingless males (%)	14.29	15.87	10.32	9.91	NR	NR	NR		NR

Table 2.2.4 (Contd...) Virulence monitoring of brown planthopper population in PHPM, kharif 2022 Contd...

	,		•												
Locations	•		Ludhiana			•		New Delhi	•		•	Д	Pantnagar	-	
Gene differential	PTB33	RP2068- 18-3-5	RP bio 4918-230S	Salkathi	TNT	PTB33	RP2068- 18-3-5	RP bio 4918-230S	Salkathi	Z.	PTB33	RP2068- 18-3-5	RP bio 4918- 230S	Sal kath i	Ň
No. females released			20			10	10	10	2	10			25		
Virulent females (%)			100					100					100		
No nymphs hatched/fema le	23.25	26.3	33.65	34.95	87.5	43.2	42	63.3	30.7	83.1	20.5	23.1	30.4	22.3	50.8
Total nymphs/fema le			205.7					262.3					147		
Egg period	10	10	10	6	6	6	8	8	6	7.5	12	12	12	12	12
Nymphal surival (%)	93	76	97.5	96.5	66	58.4	61.3	63.6	32.9	76.6	37.6	37.2	49.2		77.4
Nymphal duration	21	20	19	19	17						15	15	15		15
Males (%)	53.2	52.3	51.2	52.4	42.9	44.5	47.9	43.4	47.3	44.3	31.5	30.1	38.3		38.2
Sex ratio	0.88F:1.0 M	0.91F:1.0 M	0.95F:1.0 M	0.91F:1.0 M	1.33F:1.0 M	1.25F:1.0 M	1.09F:1.0 M	1.31F:1.0 M	1.11F:1.0 M	1.26F:1.0 M	2.2F:1.0 M	2.32F:1.0 M	1.6F:1.0 M		1.61F:1.0 M
winged females(%)	29.1	29.7	28.2	23.3	24.7										
Winged males (%)	39.8	41.2	42.5	43.0	33.8										
wingless females(%)	17.7	18.0	20.6	24.3	32.3										
Wingless males (%)	13.4	11.1	8.7	9.3	9.1										

2.3 Chemical Control Studies

i) Evaluation of granular insecticides for the management of gall midge (EIGM)

Asian gall midge, *Orseolia oryzae* (Wood-Mason) is one of the key pests of rice at vegetative stage of crop growth particularly in the rainy season. Of late, there is an uptrend in its incidence in many areas leading to severe yield losses. In order to identify the effective granular insecticides/ combination of granular insecticides for the management of gall midge a field trial was conducted at 12 locations (RGL, BPT, MTU, NLR, WGL, GVT, ADT, PTB, JDP, ABP, SKL and CHP) during 2022 *Kharif* season.

Treatments:

Crop Stage	Trt. No.	Insecticide	Dosage (formulation)
Seed Treatment alone	T ₁	Thiamethoxam 25% WG	4 g/kg seed
Nursen, clone (45 DAS/one week	T ₂	Carbofuran 3% CG (Check1)	33 Kg per ha (3.3 g/m ²⁾
Nursery alone (15 DAS/one week before transplantation)	T ₃	Fipronil 0.3 GR	25 Kg per ha (2.5 g/m²)
before transplantation)	T ₄	Chlorantraniliprole 0.4 GR	10 Kg per ha (1.0 g/m²)
	T 5	Carbofuran 3% CG (Check2)	33 Kg per ha (3.3 g/m²)
Main field alone (20-25 DAT)	T ₆	Fipronil 0.3 GR	25 Kg per ha (2.5 g/m²)
Maili lielu alolle (20-23 DAT)	T ₇	Chlorantraniliprole 0.4 GR	10 Kg per ha (1.0 g/m²)
	T ₈	Cartap hydrochloride 4% GR	18.75 kg per ha(1.9g/m²)
	T ₉	T ₁ + T ₆	
Seed Treatment + Main field	T ₁₀	T ₁ + T ₇	
	T ₁₁	T ₁ + T ₈	
Nursery + Main field	T ₁₂	T ₃ + T ₇	
Nuisciy + Maili lielu	T ₁₃	T ₃ + T ₈	
Untreated control	T ₁₄	Untreated Control	

Statistical analysis: Data were subjected to appropriate transformations and to two-way ANOVA. Treatment effects across the locations (treatment*location interaction) were estimated to draw overall conclusions. Means were separated by LSD at five per cent level of significance.

Results:

Effect of granules on gall midge damage at different locations:

Data from nine locations were considered for analysis and at all the locations percent SS crossed the ETL of 5% in the untreated plot. Percent silver shoots (SS) ranged from 1.97 (CHP) to 35.04 (JDP). Treatment effects compared to untreated control were significant at all the locations except SKL. Location wise results are described below based on the mean of 35, 50, and 65 DAT (Table 2.3.1.1).

ADT: T13 (5.72 %SS), T9 (5.82 %SS), and T10 (5.85 %SS) were most effective as compared to the remaining treatments.

AMB: T13 (8.51 %SS) was most effective along with T12 (9.27 %SS) which were significantly superior as compared to the remaining treatments. In untreated plot 20.16 %SS were recorded.

CHP: All the treatments were significantly effective as compared to the untreated control (T14) (20.11 %SS) and T9 (1.97 %SS) was significantly superior to all the remaining treatments.

GVT: All the treatments were significantly effective as compared to the untreated control (T14) (32.04 %SS). Significantly lower SS were recorded in T10 (5.73 %) and T9 (6.35%) as compared to rest of the treatments.

JDP: All the treatments were significantly effective as compared to the untreated control (T14) (35.04 %SS). T12 was the most effective (5.54 %SS) treatment. T13 (8.41 %SS) was comparable to the best performing treatment.

MTU: Though T8 (17.93 %SS) and T3 (19.26 %SS) were effective in suppressing gall midge damage, treatment means were not significant as compared to untreated control (22.27 % SS).

PTB: Treatments T12 and T4 (4.56 5 SS), t9 (5.12 %SS), T3 (5.17 %SS) and T2 (5.26 %SS) were significantly superior to untreated control (8.61 %SS) but were similar to rest of the treatments.

SKL: Treatment effects were not significant and all were at par.

WGL: Treatment effects were significant and in all the treatments significantly lower damage was recorded as compared to the untreated control (10.05 %SS). T5 was most effective with significantly lower %SS (2.49).

Effect of granules on the gall midge damage across the locations (locationXtreatment):

In order to arrive at treatment effects across the locations (treatment x locations) interaction effects were worked out. **T9** (seed treatment with thiamethoxam 25% WG followed by application of fipronil 3% GR at 20-25 DAT in the main field) was most effective with significantly lower SS (8.27%) as compared to rest of the treatments (Table 2.3.1.2).

Stem borer:

Effect of granules on stem borer damage at different locations:

Data from eight locations were considered for analysis. Only at three locations (ADT, ABP, and GNV) DH damage crossed ETL of 10 per cent. Percent silver shoots (SS) ranged from 1.97 (CHP) to 35.04 (JDP). Treatment effects were significant at all the locations compared to untreated control treatment. Location wise results are described below based on the mean of 35, 50, and 65 DAT (**Table 2.3.1.3 and Table 2.3.1.4**).

ABP: All the treatments were effective and resulted in lower percent dead hearts (DH) as compared to the untreated control (9.9 %). In T8 and T10 significantly lower DH (5.51 and 5.35 per cent respectively) were recorded compared to rest of the treatments. With respect to white ears, T13 was the best treatment (4.91 %WE). In untreated control treatment 18.39 %WE were recorded.

ADT: Except T8 and T5 (12.5 % and 14.05 % DH) all the treatments were significantly superior to untreated check (16.48 %DH). With respect to WE all the treatments were significantly effective as compared to untreated control and at par each other (11.07 %WE).

CHP: DH were too low to be analysed. Whereas, WE damage was considerable with 13.62 per cent in the untreated control. T12, T10, T7 and T6 were most effective with significantly lower DH as compared to remaining treatments.

GVT: T10 and T9 were most effective with significantly lower DH (2.61% and 3.27% respectively). In untreated control (T14) 17.02 % DH were recorded.

JDP: T12 was most effective with significantly lower percent DH (2.65) as compared to rest of the treatments. For WE, T12 and T13 were most effective with significantly lower %DH (7.42 and 7.92 respectively).

MTU: Except T4, all the treatments were significantly superior to untreated check (3.39 % DH). For WE, in T3 comparatively lower percent WE (6.29) were recorded as compared to the rest of the treatments.

NLR: DH damage was low and not considered. Whereas, for WE in T1 significantly lower damage was recorded (0.66 %WE) as compared to rest of the treatments.

PTB: Treatments T8 (1.18%DH) and T9 (1.54 %DH) were significantly superior to T7 (4.87 %DH) and T14 (6.36 %DH) and were comparable to rest of the treatments. With respect to WE, T10 was the best treatment and significantly superior to T9 and T5 and was at par with rest of the treatments.

RGL: All the treatments were significantly superior to the untreated control (15.26 %WE) but were at par to each other, though in T1 comparatively lower percent WE were recorded.

SKL: Treatment T7 (4.29 %DH) was superior to rest of the treatments in preventing DH formation. In T12, lower WE (6.88%) recorded as compared to remaining treatments.

WGL: All the treatments were significantly superior to untreated control (7.69 %DH) and T10 was the most effective one (0.68 %DH). Whereas, in preventing the WE damage all the treatments were significantly effective as compared to the untreated control (9.69%) and T11 was the best treatment (1.42 %WE).

Effect on stem borer damage across the locations (location X treatment):

For dead hearts (DH), T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole 0.4 GR in the main field) was most effective with 62.18 per reduction over control. Similar trend observed with WE also, wherein combination treatments were effective in preventing WE damage. T12 (fipronil 0.3 GR in nursery + chlorantraniliprole 0.4 GR in the main field) (7.46 %) was significantly superior and was at par with T7, T10, T11, and T13. In the untreated control 15.42 % WE recorded (Table 2.3.1.5).

Effect on leaf folder damage across the locations (location X treatment):

In all the treatments, significantly lower damage was recorded as compared to the untreated control and were similar in their efficacy except T1, T2, and T11 that were comparatively less effective (Table 2.3.1.6).

Effect on spiders and mirids across the locations (location X treatment):

Data revealed that all the treatments were safe to spiders and mirids and the treatment mean differences were insignificant (Tables 2.3.1.6).

Effect on yield at different locations:

In general, treatments involving two rounds of application i.e., ST + main field and nursery + main field resulted in higher yields as compared to untreated control and single application treatments (Tables 2.3.1.7).

AMB: In T12 (fipronil granules in nursery+ chlorantraniliprole granule in main field) significantly higher yield was recorded (4261.7 kg/ha) as compared to the untreated control (T14) (2981.7 kg/ha) and was at par with remaining treatments except T3 (3518.3 kg/ha).

ADT: T12 (fipronil granules in nursery + chlorantraniliprole granule in main field) resulted in better yield (2966.7 kg/ha) as compared to the untreated control (T14) (1766.7 kg/ha) and T1 (2261.7 kg/ha), but was at par with the remaining treatments.

CHP: Significantly higher yield (44683.3 kg/ha) was recorded in T10 (seed treatment + chlorantraniliprole granules in main field) as compared to remaining treatments.

GVT: In T10 (seed treatment with thiamethoxam + chlorantraniliprole granule in main field) significantly higher yield (7565.3 kg/ha) followed by T9 (7328 kg/ha).

JDP: Significantly higher yield was recorded in T12 (fipronil granules at nursery+chlorantraniliprole granule in main field) (4240 kg/ha) as compared to remaining treatments except T7, T8, and T13.

MTU: In T9 (seed treatment + fipronil at main field) gave highest yield (2712.3 kg/ha) and was at par with others except T10, T8, and T1.

NLR: Significantly higher yield (7263.3 kg/ha) was recorded in T9 as compared to untreated control (4926.7 kg/ha) and was at par with rest of the treatments.

PTB: T5 (carbofuran 3% CG in main field) gave higher yield (4626.7 kg/ha) compared to remaining treatments and was at par with T7 and T12.

RGL: Though not significant, the yield was comparatively higher in T9 ((5906.7 kg/ha).

SKL: T7 (chlorantraniliprole granule in main field) gave significantly higher yield 92728.3 kg/ha) among all the treatments.

WGL: T9 was superior and gave highest yield (4375.5 kg/ha amongst the treatments.

Effect on yield across the locations (location X treatment):

Treatment effects were significant and in all the treatments higher yield was recorded as compared to the untreated control (T14) (3214.5 kg/ha). T12 (fipronil granules in nursery + chlorantraniliprole granules in main field) was the best treatment with significantly higher yield (4496.4 kg/ha) as compared to remaining treatments. T9 (seed treatment with thiamethoxam + fipronil granules in main field) (4468.2 kg/ha) and T10 (seed treatment with thiamethoxam + chlorantraniliprole granules in main field) (4340.8 kg/ha) were second and third best and were at par with T12. The best treatment resulted in 39.9% yield advantage over the untreated control (Table 8).

Conclusions:

For gall midge, T9 (seed treatment with thiamethoxam followed by application of fipronil 3% GR at 20-25 DAT in the main field) was most effective with significantly lower SS (8.27%) as compared to rest of the treatments

In case of yellow stem borer T10 (seed treatment with thiamethoxam followed by chlorantraniliprole 0.4 GR in the main field) was most effective in preventing DH formation with 62.18 per reduction over control. Whereas, T12 (fipronil granules in nursery + chlorantraniliprole granules in main field) was significantly superior in preventing white ear formation with 51.67 % reduction over control.

With respect to yield, treatment effects were significant and in all the treatments higher yield was recorded as compared to untreated control (T14) (3214.5 kg/ha). T12 (fipronil granules in nursery followed by chlorantraniliprole granules in main field) was the best treatment with significantly higher yield (4496.4 kg/ha) as compared to remaining treatments. T9 (seed treatment with thiamethoxam followed by fipronil granules in main field) (4468.2 kg/ha) and T10 (seed treatment with thiamethoxam followed by chlorantraniliprole granules in main field) (4340.8 kg/ha) were second and third best and were at par with T12. The best treatment resulted in 39.9% yield advantage over the untreated control.

ICAR-IIRR Annual Progress Report 2022, Vol. 2 – Entomology

Crop Stage		Treatment	Dose	ADT	ABP	CHP	GNV	JDP	MTU	PTB	SKL	WGL
Seed Treatment alone	7	Thiamethoxam 25% WG	4 g/kg seed	8.03 (4.62) ^{cd}	13.73 (7.94) bc	5.55 (3.19) ef	22.66 (13.16) ^b	21.95 (12.77) ^b	21.88 (12.81) ^{abc}	7.19 (4.18) ^{ab}	5.81 (3.35) a	7.47 (4.29) [©]
Nursery alone	T ₂	Carbofuran 3% CG (Check1)	33 Kg per ha (3.3 g/m²)	17.75 (10.26) ^a	15.75 (9.12) ^b	7.80 (4.48) ^d	16.41 (9.46) ^d	15.80 (9.15) °	23.32 (13.61) ^{ab}	5.26 (3.04) ^b	6.14 (3.53) ^a	3.89 (2.23) ^{ef}
(15 DAS/one week before	٦	Fipronil 0.3 GR	25 Kg per ha (2.5 g/m^2)	8.91 (5.12) ∞	11.76 (6.79) °	5.99 (3.44) ^e	19.95 (11.54)°	16.15 (9.42) °	19.26 (11.20) bc	5.17 (2.98) ^b	6.31 (3.63) ^a	5.45 (3.14) de
transplantation)	T	Chlorantraniliprole 0.4 GR	10 Kg per ha (1.0 g/m²)	6.74 (3.87) ^{def}	13.28 (7.69)°	8.86 (5.09) ^{cd}	17.09 (9.87) ^d	15.80 (9.14) °	24.44 (14.48) ^a	4.64 (2.68) ^b	5.80 (3.35) ^a	6.09 (3.50) bcd
	T ₅	Carbofuran 3% CG (Check2)	33 Kg per ha (3.3 g/m²)	14.08 (8.12) ^b	11.85 (6.90) °	5.22 (3.00) ef	13.58 (7.82) e	14.12 (8.19) ⊶	18.00 (10.55) °	5.93 (3.44) ^{ab}	5.39 (3.12) ^a	2.49 (1.43) [†]
Main field alone	<u>г</u>	Fipronil 0.3 GR	25 Kg per ha (2.5 g/m^2)	7.62 (4.37) ^{cde}	12.04 (6.97) °	5.31 (3.05) ^{ef}	11.78 (6.77) ⁹	15.17 (8.77) °	20.73 (12.13) abc	9.16 (5.33) ^a	4.74a (2.72)	3.55 (2.04) ^{ef}
(20-25 DAT)	T ₇	Chlorantraniliprole 0.4 GR	10 Kg per ha (1.0 g/m^2)	7.57 (4.35) ^{ode}	11.42 (6.61)°	9.99 (5.74) ^{cd}	11.13 (6.40) ⁹	15.02 (8.71) °	24.97 (14.66) ^a	4.56 (2.63) ^b	6.02 (3.47) ^a	5.24 (3.01) de
	۳	Cartap hydrochloride 4% GR	18.75 kg per ha(1.9g/m²)	8.57 (4.92) ∘	14.17 (8.22) °	13.32 (7.66) ^b	12.72 (7.32) [†]	13.03 (7.54) ∞	17.93 (10.50)≎	6.81 (3.95) ^{ab}	4.70 (2.71) ^a	7.38 (4.24) bc
	T ₉	T ₁ + T ₆		5.82 (3.34) ^f	12.22 (7.05) °	1.97 (1.13) հ	6.35 (3.64) ^j	12.93 (7.49) ^{cd}	21.45 (12.55) abc	5.12 (2.95) ^b	4.86 (2.80) ^a	3.70 (2.12) ^{ef}
Seed Treatment + Main field	T ₁₀	T ₁ + T ₇		5.85 (3.36) ^f	12.47 (7.29) °	3.49 (2.00) ⁹	5.73 (3.29) i	14.12 (8.19) ^{cd}	21.29 (12.43) ^{abc}	7.46 (4.32) ^{ab}	4.54 (2.61) ^a	7.85 (4.52) ^b
	T11	T ₁ + T ₈		6.11 (3.51) ^{ef}	11.58 (6.68) ⁰	4.43 (2.54) ^{fg}	10.14 (5.83) h	11.37 (6.58) ^{de}	21.98 (12.91) ^{abc}	7.23 (4.18) ^{ab}	5.47 (3.15) ^a	6.38 (3.67) ^{bcd}
Nursery + Main	T ₁₂	T ₃ + T ₇		7.93 (4.56)∞	9.27 (5.34) [⊕]	5.79 (3.32) [⊕]	8.53 (5.02) i	5.54 (3.18) [†]	23.86 (13.94) ^{ab}	4.56 (2.63) ^b	5.30 (3.05) ^a	5.28 (3.03) ^{de}
field	T ₁₃	T ₃ + T ₈		5.72 (3.28) ^f	8.51 (4.91) ^e	8.38 (4.81) ^d	9.46 (5.43) ^{ih}	8.41 (4.84) ^{ef}	21.92 (12.85) ^{abc}	7.32 (4.30) ^{ab}	4.73 (2.72) ^a	6.55 (3.76) bcd
Untreated control	T ₁₄	Untreated Control		18.11 (10.50) ^a	20.16 (11.75) ^a	20.11 (11.71) ^a	32.04 (18.93) ^a	35.04 (20.73) a	22.27 (13.01) ^{abc}	8.61 (5.15) ^a	5.08 (2.92) ^a	10.05 (5.80) ^a
LSD (P=0.05)				0.8961	1.6147	0.7555	0.4919	1.929	3.1314	2.1083	1.1352	1.1796
Figures in parenthe.	ses are	Figures in parentheses are square root transformed values. Means within a column followed by same alphabet are not significantly different from one another (LSD, P<0.05)	eans within a colu	ımn followed	by same alph	nabet are no	t significantly	different fro	om one anoth	er (LSD, P<	0.05).	

Table 2.3.1.2. Field efficacy of granular insecticides against rice gall midge across the locations

Crop Stage		Treatment	Mean
Seed Treatment alone	Τı	Thiamethoxam 25% WG	12.70 (6.52) b
	T ₂	Carbofuran 3% CG (Check1)	12.46 (6.16) c
Nursery alone (15 DAS/one week before transplantation)	٦ آ	Fipronil 0.3 GR	10.99 (5.82) d
	T ₄	Chlorantraniliprole 0.4 GR	11.42 (5.60) de
	Ts	Carbofuran 3% CG (Check2)	10.07 (4.97) f
Mail and and and and an and an and an	Te	Fipronil 0.3 GR	10.01 (4.45) g
Main field alone (20-23 DAT)	T,	Chlorantraniliprole 0.4 GR	10.66 (4.88) f
	T ₈	Cartap hydrochloride 4% GR	10.96 (5.37) e
	T ₉	T ₁ + T ₆	8.27 (3.08) k
Seed Treatment + Main field	T ₁₀	T1 + T7	9.20 (3.47) j
	T ₁₁	T ₁ + T ₈	9.41 (4.06) hi
Nursery + Main field	T ₁₂	T ₃ + T ₇	8.45 (3.80) i
	T ₁₃	T ₃ + T ₈	9.00 (4.16) gh
Untreated control	T ₁₄	Untreated Control	19.05 (10.66) a
LSD (P=0.05)			0.3273

Figures in parentheses are transformed values. Means within a column followed by same alphabet are significantly not different (LSD, P<0.05).

Table 2.3.1.3 Field efficacy of granular insecticides on stem borer in terms of dead hearts at different locations

									Ē	Ī
Crop Stage	Trt. No.	Insecticide	ADT	AMB	GNV	JDP	MTU	PTB	SKL	MGL
Cool of months of Doco	F	Thiomothouses 25% M/C	5.80	8.50	15.42	6.01b	1.74	1.57	8.65	2.77
Seed Heatinelli alone	-	I III allieuloxalli 20 % WG	(3.33) ه	(4.92) ^{ab}	(8.88) ^{ab}	(3.47)	(1.0) b	(0.90) ab	$(5.02)^{bc}$	(1.59) ^{cd}
	Ľ	Carhofuran 3% C.G. (Check1)	5.93	5.72	14.32	4.64bc	1.15	1.42	7.87	4.20
October 1	7.	Carbolara 3/8 CO (Creckr)	(7.30) ه	(3.30) cdefg	(8.27) bc	(2.67)	(0.66) b	(0.81) ab	(4.55) bod	(2.41) ♭
(45 DAS/one wook hofere	Ļ		86'9	7.89	13.20	4.43bc	1.81	1.27	6.50	4.43
(13 DAS/Olle Week Delole		75 C.5 III 0:10 III	(3.43) ∘	(4.59) ^{abc}	(7.60) bod	(2.54)	(1.04) ♭	(0.73) b	(3.76) cde	(2.56) b
il alls plantation)	ř		96'9	6.27	11.43	6.31	3.38	2.10	5.20	3.73
	4	Circlaintainipiole 0.4 GR	(3.42) ∘	(3.63) ^{bodefg}	(6.58) de	(3.66) ^{ab}	(1.96) a	(1.23) ab	$(3.0)^{de}$	(2.14) bc
	Ė	(6/2040) 50 /08 acritication	14.05	7.74	69'6	4.63	2.58	2.41	9.91	1.98
	1.5	Calbolulail 3% CG (Cileckz)	$(8.10)^a$	(4.48) abod	$(5.57)^{ef}$	(2.67) bc	(1.49) ab	(1.40) ab	$(5.77)^{ab}$	(1.13) def
	Ļ		98.7	7.57	8.40	5.62	1.89	1.50	6.81	2.07
Main field alone	9	75 C.5 III O.10 II	(4.51) bc	(4.40) bode	(4.87) ^{fg}	(3.25) b	(1.08) ab	(0.88) ab	(3.93) cde	(1.19) def
(20-25 DAT)	Ľ		5.83	69.5	7.14	5.13	1.24	2.42	4.28	1.0
	11	Ciloralitaliiipiole 0.4 GR	(3.34) ∘	(3.28) cdefg	(4.10) 9	(3.0) bc	(0.71) b	(1.40) ab	(2.46) e	(0.57) fg
	ř	O /0/ obinoldocabud action	12.49	4.508	12.17	4.51	2.43	1.67	6.42	2.29
	8	Caltap ligalocinolide 4 % GN	(7.19) ^{ab}	(2.59) 9	(7.01) ∞	(2.60) bc	(1.40) ab	$(0.96)^{ab}$	(3.72) cde	(1.32) de
	Ļ	, + T,	6.57	7.07	3.27	4.88	1.03	1.83	12.07	2.16
	6	14 16	(3.77) ∘	(4.14) bodef	(1.87) h	(2.81) bc	(0.60) b	(1.06) ab	(7.07) ab	(1.24) de
Sood Trootmont + Main field	ř	T, + T.	4.43	5.35	2.61	4.78	1.31	1.03	7.31	0.68
Seed Heatinelit + Maill Held	110	/ + 1	(2.54) ∘	(3.09) ^{efg}	(1.50) ^h	(2.74) bc	(0.76) b	(0.59) b	(4.22) bode	(0.39) 9
	;	T + T	5.85	5.17	7.46	3.86	1.23	1.89	5.97	1.89
	111	8	(3.36) °	(2.98) ^{fg}	(4.66) ^{fg}	(2.21) bc	(0.70) b	(1.10) ab	(3.43) cde	(1.08) def
	ř	7, 1, 7,	6.53	5.50	6.81	2.64	1.33	2.36	6.05	1.30
7 C C C C C C C C C C C C C C C C C C C	112	13 + 17	(3.75) °	(3.16) ^{defg}	(4.19) 9	(1.51) ∘	(0.76) b	(1.43) ^{ab}	(3.48) cde	(0.74) efg
Mulsery + Mail Held	Ļ	7, + 7,	4.67	5.30	66'.	4.24	1.59	2.28	68.9	1.86
	113	8 - 8	(2.68) °	$(3.05)^{fg}$	(4.92) ^{fg}	(2.43) bc	(0.91) b	(1.31) ab	(3.98) bode	(1.07) def
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	;	Introoted Control	16.48	9.93	17.02	9.05	2.34	3.23	7.01	7.68
	1.14	סווופשופת כסווויסו	$(9.57)^a$	(5.74) a	(9.83) a	(5.22) ^a	(1.35) ab	(1.87) a	(4.05) bcde	(4.41) a
LSD (P=0.05)										
Note: Electron in normal property of the property and the property of the prop	a out to or or or	oformal values. Masse within a solumn followed by earn alababat are not significantly different from one another (100 0000)	June following	odalo omeo vd be	in ton ore tod	L , Ita co iti az	ifforont from	4+000 000 0	0/0 001/20	05/

Note: Figures in parentheses are square root transformed values. Means within a column followed by same alphabet are not significantly different from one another (LSD, P<0.05).

Table 2.3.1.4 Field efficacy of granular insecticides on stem borer in terms of white ears at different locations

Gron Stage		Treatment	TUA	ARP	GH2	qui	MTII	N	PTR	RGI	SKI	NO.
of the state of th					=	5	2		<u>.</u>	101	2	
Seed Treatment	Ļ	Thiamethoxam 25%	5.31	11.50	7.82	19.37	7.94	99.0	19.56	2.99	28.66	3.90
alone	=	WG	(3.04) ♭	(6.63) b	(4.50) bc	(11.19) b	(4.57) ∘	(0.38) °	(11.35) ^{abc}	(1.71) b	(17.18) a	(2.24) cde
Nireary alone	Ļ	Carbofuran 3% CG	08.9	11.83	8.12	16.0	9.54	5.16	23.58	4.77	11.38	7.01
(15 DAS/one	7.	(Check1)	(3.90) b	(88.9) p	(4.68) b	(9.23) ^{cd}	$(5.50)^{bc}$	(2.98) bc	(13.71) abc	(2.73) b	_∞ (09.9)	(4.05) b
week hefore	Ļ	Finconil 0.3 GB	4.92	14.30	7.39	19.43	6.29	6.38	23.70	3.370	9.78	3.39
Transplan-	2	2000	(2.82) ♭	(9.34) a	(4.26) bod	(11.29) ♭	(3.61) ∘	(3.68) bc	13.86) ^{abc}	(1.93) b	(5.63) ^{cd}	(1.94) cde
tation)	Ľ	Chlorantraniliprole	5.82	8.88	6.40	15.54	15.62	10.10	17.79	3.98	12.88	4.03
	4	0.4 GR	(3.34) b	(5.1) bcd	(3.69) bode	(8.97) ode	(9.07) b	(5.83) ab	(10.38) ^{abc}	(2.28) b	(7.60) bod	(2.32) ^{cd}
	H	Carbofuran 3% CG	7.19	9.64	5.90	12.89	13.03	6.52	23.22	4.02	19.64	3.20
	2	(Check2)	(4.13) b	(00.0) pod	(3.40) cdef	(7.40) def	(7.72) bc	(3.76) bc	(14.56) ^{ab}	(2.30) b	(11.58) abc	(1.84) ode
	Ľ	Finronil 0.3 GB	7.24	10.63	4.42	16.28	08.9	12.90	19.39	4.73	22.82	2.96
Main field alone	0	20 0:0	(4.16) b	(6.13) bc	(2.54) ^{fg}	(9.43) bc	(3.92) ∘	(7.44) ^{ab}	(11.21) abc	(2.70) b	(13.457) ^{ab}	(1.70) cde
(20-25 DAT)	Ļ	Chlorantraniliprole	6.21	9.63	3.08	12.37	8.97	10.37	17.42	5.04	8.16	2.25
	-	0.4 GR	(3.60) b	(to.c)	(1.77)9	(7.13) ef	(5.16) bc	(6.0) ^{ab}	(10.09) bc	(2.89) b	(4.77) ^d	(1.29) cde
	_E	Cartap hydrochloride 4%	6.30	9.60 (5.53)	6.29	11.75	20.92	7.77	20.15	4.62	5.57	2.74
		ĞŔ	(3.02)	poq	(3.6Z) bodei	(0.77)	(13.60)	(4.47) au	(11.73) and	(2.04)	(3.ZT) ^u	ann (/C.I.)
	Ė	H H	6.30	9.35	4.47	15.34	10.05	9.11	26.22	3.94	14.40	3.49
	6	1 + 16	(3.62) b	(3.40) bod	(2.57) efg	(8.86) cde	(5.78) bc	(5.26) ^{ab}	$(15.40)^a$	(2.26) b	(8.34) bcd	(2.0) cde
Seed Treatment	H	H H	6.50	8.94	3.41	15.0	8.55	7.36	15.43	4.32	13.35	1.98
+ Malli	10	1 + 17	(3.53) b	(CI.C)	(1.97) 9	(8.64) cde	(4.93) bc	(4.25) ^{ab}	(8.93)°	(2.48) b	(7.90) bod	(1.13) de
	Ė	£ + F	5.70	6.51	5.64	12.75	11.30bc	5.36	20.98	3.27	7.54	4.61
	=	01	(3.30) ♭	(3.74) ^{ed}	(3.24) def	(7.33) ef	(6.53)	(3.07) bc	(12.27) abc	(1.88) b	(4.34) ^d	(2.65) bc
	H	H	6.03	6.81	3.26	7.42	9.81bc	6.64	22.36	3.90	6.88	1.42
Nursery + Main	12	_3 + _7	(3.50) b	(3.9 <i>L</i>) ode	(1.88) 9	(4.27) 9	(2.666)	(3.97) b	(12.98) abc	(2.28) b	(3.98) ^d	(0.82) e
Tield	ř	T, + T.	5.32	4.90	4.56	7.91	11.48bc	99.9	24.45	3.96	10.51	3.51
	113	-3 + L8	(3.05) b	(2.81) e	(2.61) efg	(4.54) 9	(0.70)	(3.84) b	$(14.37)^{ab}$	(2.27) b	(6.14) ∞	(2.02) cde
Untreated	Ę	Untreated Control	11.06ª	18.40	13.62	29.57	9.92bc	6.98	20.83	15.26	18.95	9.70
control	<u>+</u>		(6.40)	(10.72) a	(7.89) a	(17.41)a	(5.71)	(4.02) b	(12.09) abc	(8.77) a	(11.25) abc	$(5.60)^a$
LSD (P=0.05)			1.61	2.24	1.12	1.88	4.48	3.40	5.01	1.54	6.30	1.50
	tuoror.	[Figure is an appropriate for the second section Manager and the second property of the second section of the second seco	John Coulo	or drive or	Total Control of	and have a second	. Land to de dail	· · · · · · · · · · · · · · · · · · ·	/ Tarana 23:1- 1-	ק לי	(1)	

Figures in parentheses are transformed values. Means within a column followed by same alphabet are significantly not different (LSD, P<0.05).

Table 2.3.1.5 Field efficacy of granular insecticides against stem borer in rice across the locations

			Ξ		WE	
Crop Stage		Treatment	Mean	%ROC	Mean	%ROC
Seed Treatment alone	Ľ	Thiamethoxam 25% WG	6.31 (2.27) b	30.62	10.77 (2.21) bcdef	30.18
	T ₂	Carbofuran 3% CG (Check1)	5.66 (2.38) b	37.78	10.42 (2.45) bcdef	32.45
Nursery alone (15 DAS/one week before transplantation)	٤	Fipronil 0.3 GR	5.69 (2.16) b	37.42	9.90 (2.13) bcdefg	35.85
	Τ4	Chlorantraniliprole 0.4 GR	5.55 (2.20) b	38.95	10.10 (2.32) bcd	34.50
	T ₅	Carbofuran 3% CG (Check2)	6.63 (2.16) b	27.15	10.53 (2.38) bc	31.78
Main field clam (20 25 DAT)	T ₆	Fipronil 0.3 GR	5.22 (1.74) cd	42.61	10.82 (2.39) b	29.87
Maii neid alone (20-23 DA1)	T ₇	Chlorantraniliprole 0.4 GR	4.09 (1.36) ef	54.99	8.35 (1.91) efg	45.87
	T ₈	Cartap hydrochloride 4% GR	5.81 (2.09) bc	36.08	9.57 (2.26) bcde	37.95
	T ₉	T1+T6	4.86 (1.56) de	46.52	10.27 (2.30) bcd	33.44
Seed Treatment + Main field	T ₁₀	T1+T7	3.44 (1.05)f	62.18	8.45 (1.88) fg	45.21
	Т11	T ₁ + T ₈	4.16 (1.50) de	54.23	8.37 (2.00) cdefg	45.76
blois sion + successive	T ₁₂	T ₃ + T ₇	4.07 (1.40) def	55.27	7.46 (1.74) g	51.67
Nuisery + Mail neid	T ₁₃	T ₃ + T ₈	4.35 (1.61) de	52.20	8.33 (1.98) defg	45.99
Untreated control	T ₁₄	Untreated Control	9.1 (3.45) a	0	15.43 (3.78) a	0.00
LSD (P=0.05)			0.35		0.3818	

Figures in parentheses are transformed values. Means within a column followed by same alphabet are significantly not different (LSD, P<0.05).

Table 2.3.1.6 Field efficacy of granular insecticides on leaf folder, spiders and Mirid bugs in

rice across the locations

Crop Stage	Treatm	nent	Leaf folder	Spiders	Mirid bugs
Seed Treatment alone	T ₁	Thiamethoxam 25% WG	7.07	0.99	1.57
Oced Treatment alone	11	Tillametiloxam 23 /0 WO	(3.33) bc	(19.78) a	(10.54) ^{ab}
	T ₂	Carbofuran 3% CG (Check1)	7.91	0.98	1.71
	12	Carbolaran C70 CC (Check 1)	(3.79) b	(19.73) a	(10.93) ab
Nursery alone (15 DAS/one week	T ₃	Fipronil 0.3 GR	6.01	0.91	1.63
before transplantation)			(2.89) ^{cd}	(19.24) a	(10.72) ab
	T ₄	Chlorantraniliprole 0.4 GR	6.23	0.91	1.68
	.,		(2.89) ^{cd}	(19.18) a	(10.70) ab
	T ₅	Carbofuran 3% CG (Check2)	5.98	0.91	1.54
	- 0	(0.100.11.2)	(2.76) cd	(19.21) a	(10.44) ab
	T ₆	Fipronil 0.3 GR	6.25	0.93	1.31
Main field alone (20-25 DAT)			(2.98) cd	(19.55) a	(10.01) b
	T ₇	Chlorantraniliprole 0.4 GR	5.99	0.91	1.76
	- '		(2.76) cd	(19.39) a	(11.09) a
	T ₈	Cartap hydrochloride 4% GR	6.49	1.09	1.69
		Cartap Hydrochionae 170 Crt	(3.16) ^{cd}	(19.60) a	(10.88) ab
	T ₉	T ₁ + T ₆	6.49	0.91	1.70
	. 9	-11-10	(2.98) ^{cd}	(19.21) a	(10.97) ab
Seed Treatment + Main field	T ₁₀	T ₁ + T ₇	5.91	0.94	1.58
ood froumont - man noid	- 10	11.17	(2.84) ^{cd}	(19.37) a	(10.71) ^{ab}
	T ₁₁	T ₁ + T ₈	7.03	0.89	1.62
	'''	11.10	(3.32) bc	(19.12) a	(10.81) ^{ab}
	T ₁₂	T ₃ + T ₇	5.25	0.89	1.80
Nursery + Main field	1 12	13 - 17	(2.51) d	(19.12) a	(11.16) a
raioury - main noid	T ₁₃	T ₃ + T ₈	6.38 ^{cd}	0.89	1.74
	113	13 - 10	(2.96)	(19.24) a	(11.05) a
Untreated control	T ₁₄	Untreated Control	11.68	0.99	1.56
	1 14	Ontrodica Control	(5.56) a	(19.62) a	(10.53) ab
LSD (P=0.05)			0.6022	0.6996	0.9897

Figures in parentheses are square root transformed values. Means within a column followed by same alphabet are not significantly from one another (LSD, P<0.05).

Table 2.3.1.7. Effect of granular insecticides on yield in rice at different locations

Triginathy claim AMB CHP GNV JPP MTU NLB FRB SRJ SRJ WGL 1 256Horling Inchrokam 2261.7cs 3333.3cs 4100h 3472 4466.7c 1822.5cs 6050m 378.3cs 578.6cs 17.18.7cs 320.3cs 1 Sabolusan 2261.7cs 3333.3cs 4406.7cs 4456.7cs 2283.3cs 6160m 3476.7c 5746.7c 17.18.7cs 320.3cs 1 Gabolusan 2261.7cs 3371.7cs 4300m 4456.3cs 2646.3cs 6160m 476.7cs 5746.7cs 17.6cs 300.3cs 400.3cs 300.3cs 300.3cs 300.3cs 300.3cs 300.3cs 300.3cs 300.3cs													
Display (Continue) 2261.7cs 3633.3acs 4100h 3472 4406.7a 1822.5cd 6050ha 3783.3cd 5786.7a 1218.7m 1218.7m Gaboluran 25%, WGC 3371.7cd 3900 4459.3 4650cd 2283.3bcd 6160ha 3476.7d 5746.7a 1265ph Fipronii 0.3 GR 2785.0ms 4216.67gb 4706.7m 4650cd 2283.3bcd 6160ha 4056.3bcd 5347.7c 1265ph 1266ph Fipronii 0.3 GR 2785.0ms 4300ms 5169a 4616.7m 4650.5bcd 6586.3ac 4010mcd 5853.3ac 1869.7cc Chlorantranii 2850.0ms 3740.0ms 4183.33gcd 5933.3cc 4671.7cc 2469.5mc 6586.7ac 4266.7ac 5806.7ac 4266.7ac 1266.3ac Chlorantranii 2850.3ms 4491.67cc 6261.3cc 4711.7cc 2395.3ac 4676.7ac 5712.ac 5712.ac 2728.3a Chlorantranii 2861.7ms 4480.6mc 4788.3ac 4790cc 5896.7ac 5890.7ac 5727.7ac </th <th>Tre</th> <th>atment</th> <th>ADT</th> <th>AMB</th> <th>СНР</th> <th>GNV</th> <th>JDP</th> <th>MTU</th> <th>NLR</th> <th>PTB</th> <th>RGL</th> <th>SKL</th> <th>WGL</th>	Tre	atment	ADT	AMB	СНР	GNV	JDP	MTU	NLR	PTB	RGL	SKL	WGL
Garboluran 2866.7a 3377.7a 3900 4459.3i 4650a 2283.3aca 6160ab 3476.7a 5746.7a 1265ab 3%.CG (Check1) 2723.3ac 3518.3aca 4216.67bi 4706.7a 4608.3ac 2344.3aca 6480ab 4008.3aca 5865.3ac 1869.7ac Pipronii O.3 GR 2723.3ac 3740.0ac 4300ac 4616.7ac 2031.3aca 6190ab 4010aca 5653.3c 2384.7ac Carboluran 286.3ac 3740.0ac 4180.3ac 646.7ac 2249.5aca 6680.7ac 400aca 5640.7ac 2249.7acc 6680.7ac 4678.3ac 5640.7ac 5640.7ac 5690.7ac 4711.7ac 2249.7acc 5680.7ac 4772.ac 5660.7ac 4711.7ac 2249.7acc 5680.7ac 4772.ac 5600.7ac 4772.ac 4771.7ac 2249.3aca 4676.7ac 4771.7ac 5249.3aca 4676.7ac 4771.7ac 5249.3aca 4676.7ac 4771.7ac 5249.3aca 4676.7ac 5772.3ac 5772.7ac 5772.7ac 5772.7ac 5772.7ac 578.7ac	7	Thiamethoxam 25% WG	2261.7bc	3633.3abc	4100h	3472	4406.7 ^d	1822.5∞	6050ab	3783.3 ^{cd}	5786.7a	1218.7հ	3222.5ef
Fipronii 0.3 GR 2723.3a 3518.3ca 4216.67ab 4706.7h 4608.3cd 2344.3abcd 6480ab 4010abcd 5826.7a 1869.7da Chlorantranii prole 0.4 GR 2850.0a 4300ag 5169a 4616.7cd 2031.5abcd 6190ab 4010abcd 5853.3a 2384.7abc Carbofurant 3%-CG (Check2) 2463.3ab 3740.0abc 4183.33gab 6933.3ab 4873.3bc 2469.5abc 5563.3ab 4626.7ab 5920a 2076ad Pipronii 0.3 GR 2823.3ab 3841.7abc 4491.67bcd 6281.3ab 4468.3abc 5643.3ab 4626.7ab 4675ab 5733.ab 1660.3ab 2076ad Cartab hydro-chainte 4%-GR 2841.7ab 3788.3abc 6281.3ab 4745cd 4745cd 2712.3abc 4640.abc 5757.3ab 2778.abc 2778.abc Ti+Te 2841.7ab 3888.3abc 4883.33abc 7538ab 4745cd 1719d 5890.abc 4040abcd 557.7ab 1639abc Ti+Te 2861.7a 4866.7ac 4736abc 5253.7abc 525	T ₂	Carbofuran 3% CG (Check1)	2686.7 ^{ab}	3371.7 ^{cd}	3900	4459.3	4650cd	2283.3abcd	6160 ^{ab}	3476.74	5746.7ª	1265gh	3409.7 ^{def}
Chlorantranili 2850 0p 3725 0pc 4300 mig 5169p 4616,7cd 2031,5mbcd 6190mb 4010mbcd 5653.3m 2384,7mc 2031,5mbcd 4010mbcd 5653.3m 4626,7m 5920mb 2034,7mc Carbolturani 3x.CG (CheckZ) 2463,3mb 3740,0mc 4183.33gmc 4638.3mc 4638.3mc 2469,7mc 5543.3mc 4626,7mc 500mc 500mc 2077.3mc 500mc 2049,7mc 5543.3mc 5757.3mc 2076mc 2076mc<	۳	Fipronil 0.3 GR	2723.3ab	3518.3bcd	4216.67fgh	4706.7h	4608.3⊶	2344.3abcd	6480ab	4058.3abcd	5826.7ª	1869.7 ^{de}	3301.3 ^{def}
Carbofuran 2463.3ab 3740.0abc 4183.33gh 6933.3af 4873.3bc 4711.7bc 2395.3abc 5690.7ab 4711.7bc 5395.3abc 4675.abc 5773.3bc 5783.3bc 1660.3ac Chlorantraniliprole 2593.3ab 3691.7abc 4491.67bcd 6261.3ab 4711.7cd 2395.3abc 4690.abc 4711.7cd 2395.3abc 4040abcd 5772.3b 7728.3b	T ₄	Chlorantranili prole 0.4 GR	2850.0ª	3725.0abc	4300efg	51699	4616.7∞	2031.5abcd	6190ab	4010abcd	5853.3ª	2384.7abc	3350.6def
Fipronii 0.3 GR 2823.3a 3840.0abc 4333.33dag 6077.3da 4638.3da 2499.7abc 5543.3ab 4256.7ab 5733.3ab 1660.3af Chlorantraniliprole 0.4 GR 2593.3ab 3691.7abc 4491.67bcd 6261.3da 4711.7da 2395.3abcd 5696.7ab 4575ab 5712a 2728.3abcd Cartap hydrochloide 4% GR 2641.7ab 3738.3abc 4283.33ab 5769.7f 4656.7da 1719d 5890ab 4040abcd 5757.3a 2472.7ab 2728.3abcd 5769.7f 4745cd 2712.3a 7263.3abcd 5767.3abcd 5767.3abcd 5767.7abcd 2472.7abcd 247	T	Carbofuran 3% CG (Check2)	2463.3 ^{ab}	3740.0abc	4183.33g ^h	5933.3ef	4873.3bc	2469.5abc	6363.3ab	4626.7ª	5920a	2076∞	4173.4abc
Chlorantraniliprole 2593.3ab 3691.7abc 4491.67bcd 6261.3de 4711.7cd 2395.3abcd 5696.7ab 4575ab 5712a 2728.3a Cartap hydro-chloride 4% GR 2641.7ab 3738.3abc 4283.33ab 7328a 4745cd 2712.3a 7263.3a 3853.3bcd 5757.3a 2472.7ab T ₁ + T ₇ 2941.7a 3868.3abc 4683.33a 7535.3a 4790bc 1839.3bcd 6906.7ab 3708.3cd 5727.7ab 2068.3cd T ₁ + T ₇ 2961.7a 4450bcde 6525.7c 4953.3bc 2525.7ab 6310ab 3708.3cd 5727.7ab 2068.3cd T ₃ + T ₇ 2966.7a 4261.7ab 4356.7cd 4953.3bc 2525.7ab 6310ab 4346.7abc 580.ab 1639efg T ₃ + T ₇ 2966.7a 4366.67cde 659.7ab 2254.8abcd 598.3ab 4000abcd 5680ab 2309.7bc T ₃ + T ₈ 266.7a 436.67cde 5096.7a 2254.8abcd 598.3ab 4900abcd 5680ab 2309.7bc LSD (0.05)	°Ľ	Fipronil 0.3 GR	2823.3ª	3840.0abc	4333.33 ^{defg}	e077.3de	4638.3⊶	2499.7abc	5543.3ab	4236.7abcd	5733.3ab	1660.3ef	4119.2abc
Cartap hydro-chloride 4% GR 2641.7ab 3738.3abc 4283.33ab 5769.7f 4656.7cd 1719d 5890ab 4040abcd 5757.3a 2472.7ab 2472.7ab Ti+Te 2941.7a 3861.7ab 4583.33ab 7535.3a 4790bc 1839.3bcd 6996.7ab 3708.3cd 5722.7ab 2068.3cd Ti+Te 2961.7a 4450bcde 6525.7c 4953.3bc 2525.7ab 6310ab 3918.3abcd 5800ab 1639ab Ti+Te 2966.7a 4121.7ab 4450bcde 6525.7c 4953.3bc 2525.7ab 6310ab 3918.3abcd 5800ab 1633ab Ti+Te 2966.7a 4261.7ab 4516.67abc 6935b 5333.3abcd 2524.8abcd 6510ab 4346.7abc 5814.7ab 2086.3bcd Ti+Te 2086.7a 4386.67cdef 6691.7c 6996.7ab 2254.8abcd 4926.7bcd 5386.7ab 5386.7ab 1458bf L3+Te 2086.2a 242.9b 384.04 695.33 1870.6 769.85 359.34 387.17	Т,	Chlorantraniliprole 0.4 GR	2593.3ab	3691.7abc	4491.67bcd	6261.3 ^{de}	4711.7 ^{cd}	2395.3abcd	5696.7 ^{ab}	4575ab	5712ª	2728.3ª	3695.5 ^{bcde}
I,+ To 2941.7a 3801.7abc 4583.33ab 7328a 4745cd 2712.3a 7263.3a 3853.3bcd 5906.7a 1639efg T,+ Tr 2816.7a 3858.3abcd 4683.33a 7535.3a 4790bc 1839.3bcd 6996.7ab 5702.7ab 5068.3cd 2068.3cd T,+ Tr 2966.7a 4450bcde 6525.7c 4953.3ab 2398abcd 6510ab 4346.7abc 5814.7a 2086.3bcd T,+ Tr 2966.7a 4186.7ab 6691.7c 5096.7ab 2254.8abcd 6510ab 4346.7abc 588.3ab 2086.3ab 41658ab Untreated Control 1766.7c 2981.7d 3050i 2952.3k 3891.7e 2088.2abcd 4926.7b 5386.7ab 1458fab LSD (0.05) 506.24 639.57 384.04 695.33 1870.6 769.85 359.34 387.17	۳	Cartap hydro- chloride 4% GR	2641.7ab	3738.3abc	4283.33efg	5769.7	4656.7⊶	1719⁴	5890ab	4040abcd	5757.3ª	2472.7 ^{ab}	3685.6 ^{bcde}
T ₁ +T ₇ 2816.7a 3858.3abc 4683.33a 7535.3a 4790bc 1839.3bcd 6996.7ab 3708.3cd 5722.7ab 2068.3cd T ₁ +T ₈ 2961.7a 4450bcde 6525.7c 4953.3bc 2525.7ab 6310ab 3918.3abcd 5800a 1639eig T ₃ +T ₇ 2966.7a 4261.7a 4516.67abc 6935b 5333.3a 2398abcd 6510ab 4346.7abc 5814.7a 2086.3bcd T ₃ +T ₈ 2483.3ab 4186.7a 4366.67cdef 6691.7c 5096.7ab 2254.8abcd 5983.3ab 4000abcd 5680ab 2309.7bc Untreated Control 1766.7c 2981.7d 3350i 2952.3k 384.0d 695.3a 1870.6 769.85 359.34 387.17	T ₉	T ₁ + T ₆	2941.7ª	3801.7abc	4583.33ab	7328ª	4745cd	2712.3ª	7263.3ª	3853.3bcd	5906.7a	1639efg	4375.5ª
T₁+T8 2961.7a 4450bcde 6525.7c 4953.3bc 2525.7ab 6310ab 3918.3abcd 5800a 1639efg T₃+T₂ 2966.7a 4261.7a 4516.67abc 6935b 5333.3a 2398abcd 6510ab 4346.7abc 5814.7a 2086.3bcd T₃+T₂ 2483.3ab 4186.7a 4366.67cdef 6691.7c 5096.7ab 2254.8abcd 5983.3ab 4000abcd 5680ab 2309.7bc Untreated Control 1766.7c 2981.7d 3050i 2952.3k 3991.7e 2088.2abcd 4926.7b 3751.7d 5386.7ab 1458fgh LSD (0.05) 506.24 639.67 181.02 242.98 384.04 695.33 1870.6 769.85 359.34 387.17	T ₁₀		2816.7ª	3858.3abc	4683.33ª	7535.3ª	4790bc	1839.3bod	6996.7ab	3708.3⊶	5722.7ab	2068.3⊶	3730bcde
T ₃ + T ₇ 2966.7a 4261.7a 4516.67abc 6935b 5333.3a 2398abcd 6510ab 4346.7abc 5814.7a 2086.3bcd T ₃ + T ₈ 2483.3ab 4186.7a 4366.67cdef 6691.7c 5096.7ab 2254.8abcd 5983.3ab 4000abcd 5680ab 2309.7bc Untreated Control 1766.7c 2981.7d 3050i 2952.3k 3991.7e 2088.2abcd 4926.7b 3751.7d 5386.7ab 1458tpn LSD (0.05) 506.24 639.67 181.02 242.98 384.04 695.33 1870.6 769.85 359.34 387.17	T ₁₁		2961.7ª	4121.7 ^{ab}	4450bcde	6525.7°	4953.3bc	2525.7 ^{ab}	6310 ^{ab}	3918.3abcd	5800a	1639efg	3601.9cdef
T ₃ + T ₈ 2483.3ab 4186.7a 4366.67cdef 6691.7c 5096.7ab 2254.8abcd 5983.3ab 4000abcd 5680ab 2309.7bc Untreated Control 1766.7c 2981.7d 3050i 2952.3k 3991.7e 2088.2abcd 4926.7b 3751.7d 5386.7ab 1458tbn LSD (0.05) 506.24 639.67 181.02 242.98 384.04 695.33 1870.6 769.85 359.34 387.17	T ₁₂		2966.7ª	4261.7ª	4516.67abc	q2E69	5333.3ª	2398abcd	6510 ^{ab}	4346.7abc	5814.7ª	2086.3bcd	4291.7 ^{ab}
Untreated Control 1766.7° 2981.7° 3050i 2952.3° 3991.7° 2088.2°bcd 4926.7° 3751.7° 5386.7°b 1458fgh LSD (0.05) 506.24 639.67 181.02 242.98 384.04 695.33 1870.6 769.85 359.34 387.17	T ₁₃	T ₃ + T ₈	2483.3 ^{ab}	4186.7ª	4366.67cdef	6691.7°	5096.7ab	2254.8abcd	5983.3ab	4000abcd	5680ab	2309.7bc	3897.5abod
506.24 639.67 181.02 242.98 384.04 695.33 1870.6 769.85 359.34 387.17	T ₁₄		1766.7≎	2981.7 ^d	3050	2952.3k	3991.7e	2088.2abcd	4926.7b	3751.7₫	5386.7ab	1458քցի	3005.71
		LSD (0.05)	506.24	639.67	181.02	242.98	384.04	695.33	1870.6	769.85	359.34	387.17	635.16

Figures in parentheses are square root transformed values. Means within a column followed by same alphabet are significantly not different (LSD, P<0.05).

Table 2.3.1.8 Field efficacy of granular insecticides on yield in rice across the locations

Crop Stage		Treatment	Mean	%IOC
Seed Treatment alone	T ₁	Thiamethoxam 25% WG	3614.3 h	12.44
	T ₂	Carbofuran 3% CG (Check1)	3764.5 gh	17.11
Nursery alone (15 DAS/one week before transplantation)	T ₃	Fipronil 0.3 GR	3968.5 fg	23.46
	T ₄	Chlorantraniliprole 0.4 GR	4043.7 ef	25.80
	T ₅	Carbofuran 3% CG (Check2)	4256.6 bcde	32.42
Main Sald along (00 05 DAT)	T ₆	Fipronil 0.3 GR	4136.8 cdef	28.69
Main field alone (20-25 DAT)	T ₇	Chlorantraniliprole 0.4 GR	4232.0 cde	31.65
	T ₈	Cartap hydrochloride 4% GR	4059.5 def	26.29
	T ₉	T ₁ + T ₆	4468.2 ab	39.00
Seed Treatment + Main field	T ₁₀	T ₁ + T ₇	4340.8 abc	35.04
	T ₁₁	T ₁ + T ₈	4255.2 bcde	32.38
No. of the Coll	T ₁₂	T ₃ + T ₇	4496.4 a	39.88
Nursery + Main field	T ₁₃	T ₃ + T ₈	4268.2 bcd	32.78
Untreated control	T ₁₄	Untreated Control	3214.5 i	0.00
LSD (P=0.05)			215.6400	

Means within a column followed by same alphabets.

ii) Insecticide-Botanicals Evaluation Trial (IBET)

Use of plant extracts or botanicals is one of the earliest and traditional practice adapted in control of insect pests of crops. Botanicals can play a key role in sustainable management of pests as they are environment-friendly, safe to nontarget organisms, renewable and cost effective. Integration of botanicals in rice IPM will reduce pesticide load in environment, prevent insecticide resistance and help in conserving natural enemy populations. Increasing emphasis on natural and organic farming in the recent past makes use of botanicals all the more relevant in pest control. Earlier efforts under AICRIP were mainly focussed on evaluation of efficacy of various commercial botanical formulations and insecticides against insect pests. Hence, it was felt necessary to test combination of insecticide and botanicals as modules against major pests of rice in order to identify the effective combination and strategically integrate use of botanicals for ideal rice IPM. So, a trial consisting of various treatments having combinations of effective and commercially available essential oils, neem formulations with recommended insecticides was evaluated during kharif 2022 to evaluate their performance against major insect pests at 30 check locations. The locations, planting dates and date and time of application are given in the following table (Table 2.3.2.1a).

Table 2.3.2.1a: Details of locations, sowing, planting, harvesting and application dates

SI.	Location	Date of	Date of	Date of	No of	Time of application
No.	Location	sowing	planting	harvesting	applications	(DAT)
1	Bapatla	03-08-2022	06-09-2022	02-09-2023	3	30,50 & 60
2	Chiplima	05-07-2022	30-07-2022	28-11-2022	3	25, 45 & 65
3	Cuttack	02-07-2022	20-08-2022	29-11-2022	3	25, 55 & 65
4	Gangavathi	02-07-2022	09-08-2022	11-12-2022	3	25,49 & 60
5	Jagdalpur	23-06-2022	20-07-2022	28-11-2022	3	30,49 & 60
6	Khudwani	05-04-2022	-	-	-	-
7	Karjat	16-06-2022	-	30-11-2022	2	30 & 46
8	Karaikal	17-06-2022	15-07-2022	01-10-2022	3	30,42 & 55
9	Kaul	-	-	-	4	25,30,50 & 65
10	Ludhiana	26-05-2022	27-06-2022	02-11-2022	3	55, 75 & 90
11	Mandya	11-08-2022	05-09-2022	19-12-2022	3	25, 45 & 60
12	Masodha	30-06-2022	29-07-2022	22-10-2022	3	28,53 & 65
13	Maruteru	23-06-2022	19-07-2022	11-11-2022	2	30,43 & 68
14	Moncompu	15-06-2022	01-07-2022	22-10-2022	-	-
15	Navsari	17-07-2022	06-08-2022	22-11-2022	3	30, 50 & 65
16	Nawagam	21-07-2022	26-08-2022	05-12-2022	3	31, 46 & 63
17	New Delhi	22-06-2022	22-07-2022	27-10-2022	4	24, 40, 45 & 60
18	Pattambi	07-07-2022	29-07-2022	05-011-2022	3	15,45 & 75
19	Pusa	21-06-2022	13-07-2022	10-11-2022	3	24, 44 & 59
20	Ranchi	07-07-2022	04-08-2022	17-11-2022	3	27,47 & 60
21	Rajendranagar	27-06-2022	23-07-2022	-	2	35 & 54
22	Raipur	11-07-2022	05-08-2022	09-12-2022	3	30, 50 & 90
23	Titabar	16-06-2022	12-07-2022	18-11-2022	-	-

Treatments:

Four combination modules/treatments consisting of three insecticides-Chlorantraniliprole 20% SC, Cartap hydrochloride 50% SC and Triflumezopyrim 10% SC, one commercial neem formulation - Neemazal and two plant oils - Neem and Eucalyptus oil procured from local market, Hyderabad (Telangana) were compared along with untreated control (only water spray). There were five treatments replicated four times and laid out in Randomized Complete Block Design (RCBD). Spray applications of the treatments were done based on pest incidence exceeding the economic threshold level guidelines at 10-15 days interval. All the treatments were applied as high-volume sprays @ 500 litres of spray fluid/ha.

Standard observation procedures were followed to record insect pest incidence in data sheets at regular intervals throughout the crop growth period. To assess stem borer and gall midge damage, observations were recorded on total tillers (TT), dead hearts (DH) and silver shoots (SS) at 30 and 50 DAT, while stem borer damage at heading stage was expressed as per cent white ears based on counts of panicle bearing tillers (PBT) and white ear heads (WE). In case of sucking pests such as brown planthopper (BPH), white backed planthopper (WBPH), green leafhopper (GLH) and natural enemies, number of insects were recorded on 10 randomly selected hills. The damage due to foliage feeders such as leaf folder, whorl

maggot, hispa, blue beetle etc., was assessed based on counts of damaged leaves/10 hills. At the time of harvest, the grain yield from net plot leaving 2 border rows on all sides was collected and expressed as kg/ha.

ANOVA test for Random Complete Block Design (RCBD) was applied to analyse data collected for each date of application at each location as well as for yield at harvest to assess the performance of the different treatments using SAS. The comparative efficacy of the treatments was worked out based on efficacy at each DAT and pooled means of the pest damages across observations and over locations. Pooled yield data analysis was carried out to assess the impact of each treatment on yield.

Results

Pest Infestation

Stem borer infestation was recorded in 16 locations and damage during vegetative stage ranged from 1.0 to 9.7% dead hearts (DH) in all insecticide treatments and 0.7 to 16.1% in other combination treatments compared to 1.7 to 21.6% in untreated control, during 30 to 85 DAT. There were significant differences in dead heart damage among the treatments at 16 locations. All insecticides treatment module recorded the lowest mean damage of 3.2% when compared to 9.5% in untreated control. Among other treatments, neemazal, eucalyptus oil and cartap hydrochloride combination showed lowest mean infestation of 5.0% DH **(Table 2.3.2.1)**.

White ears damage at heading stage in all insecticide treatment ranged from 1.0 to 25.9% compared to 2.6 to 39.3% in control across 19 centres. There were significant differences among treatments in white ear (WE) damage at 18 locations. Highest white ear damage was reported from Pattambi which ranged from 22.7 to 29.4% compared to a maximum of 39.3% in untreated control. Mean WE infestation ranged from 5.1 to 10.0% in treatments as compared to 15.6% in control. Among modules, all insecticides module was found to be the best with 5.1% mean white ear damage followed by neemazal, eucalyptus oil and cartap hydrochloride module with 8.1% WE.

Overall, all insecticides module was found to be superior in reducing stem borer damage compared to other insecticide-botanical modules and was the most effective treatment at both vegetative and reproductive phases.

Gall midge occurrence was reported from 5 centres of which Jagdalpur recorded highest damage ranging from 11.5 to 30.0% silver shoots (SS)in treatments and 62.2% in control at 50 DAT followed by Chiplima at 55 DAT. At other locations, the SS damage varied from 0.0 to 14.5% across treatments and 4.8 to 13.6% in control. There were significant differences in the efficacy among the treatments at 4 locations. Lowest mean infestation was recorded in all insecticides treatment (8.1%). However, there was no significant difference in damage among treatments but and significantly superior to control (16.2%).

Brown planthopper incidence was recorded at very high at Maruteru (913.3 to 1019.3 hoppers/10hills) at 70 DAT followed by New Delhi with population of 94.0 to 281.5 at 80 DAT. Across 9 locations, combination of Neemazal, neem oil and triflumezopyrim treatment was found to be the most effective one with mean number of 31.6 hoppers/10 hills followed by all insecticide treatment in reducing BPH populations (36.7) and they were significantly superior to control (127.5).

Whitebacked planthopper populations were observed at 7 locations and Maruteru recorded the highest populations ranging from 128.0 to 249.0. Hoppers/10 hills across the control at 45 to 75 DAT. Treatment consisting of all insecticides was the most effective in reducing WBPH populations which ranged from 3.2-125.0 across locations. Lowest mean hopper numbers (36.1/10 hills) was also recorded in all insecticide treatment followed by combination of Neemazal, neem oil and triflumezopyrim treatment (38.5) compared to that of control (98.2).

Green leafhopper infestation was high at Masodha (25.0-250.5 hoppers/10 hills) at 50 DAT among the 4 centres. All insecticides combination was the most effective treatment showing mean population of 18.6/10 hills followed by neeamazal, neem oil and Triflumezopyrim combination (25.1)) and were superior to control (68.7 hoppers/10 hills). There were significant differences in hopper populations among the treatments at 3 locations as well as in populations recorded at 35, 38 and 56 DAT in Bapatla.

Leaf folder damage was recorded from 11 locations and highest leaf damage was recorded in Ranchi centre (22.2%) during 30 DAT at Masoda and followed by Navsari at 65 DAT (21.2%) in control plots. There were significant differences in leaf damage among the treatments at 10 locations. All insecticides module was the most effective treatment showing significant mean leaf damage of 4.8 % followed by treatment with neemazl, Eucalyptus oil and cartap hydrochloride (6.5%). The leaf damage in treatments was significantly low when compared to control 11.6%).

Whorl maggot infestation was recorded at 5 centres and damage in general was low. Highest foliage damage was noticed in Titabar ranging from 9.8-13.0% in control at 15-25 DAT. The lowest mean damage was recorded in insecticides treatment (3.5%). The damage in botanical and insecticide combination treatments was significantly low (3.6-4.2%) compared to 5.7% in control.

The damage by other minor pests like Hispa, Gundhi bug and Grasshoppers were reported from Ranchi, Navsari and Khudwani centres respectively. The damage levels in case of Gundhi bug were on par in both treatments which ranged from 20.1 to 23.3% as against 29.2% in control. There was no significant difference in leaf damage caused by Hispa among treatments (24.8-32.9%) and control (42.2%). Only Khudwani centre reported grasshopper incidence where all insecticide treatment was effective in reducing mean hopper damage (5.15%) as compared to control (8.8%).

Natural enemies Populations of mirid bug, an important natural enemy of BPH, were recorded in 5 centres. High populations of 34.2 to 38.5 mirid were observed in Moncompu at 72 DAT followed by Maruteru (24.0-35.0 bugs/10 hills) at 50 DAT. No significant difference in mirid population was noticed at Bapatla and Moncompu. Mean mirid population was at par in all 4 treatments and control (15.9-19.9) indicating that botanicals and their combinations with insecticide were safe to the predator.

Spider populations were recorded in 9 locations, of which Maruteru reported more numbers of spider (24.0-35.0 / 10 hills at 40 DAT). There was significant difference in populations at 4 locations. There was no significant difference in mean spider population between treatments and control (10.5-12.4) indicating the safety of botanicals and insecticide treatments to spiders.

Coccinellid populations were reported from 3 centres-Bapatla, moncompu and kaul. There were significant differences in populations among various treatments and control at all locations except Moncompu at 57 DAT. However, there was no significant difference in mean populations in all treatments and control indicating that the treatments did not have any adverse effect on predators.

Grain Yield

There were significant differences in grain yield among the treatments including control at all locations except 4 locations- Ambikapur, Bapatla, Pattambhi and Rajendranagar. Based on mean yield of these locations, all insecticides treatment-Chlorantraniliprole, Cartap hydrochloride, Triflumezopyrim recorded the highest grain yield of 4991.0 kg/ha followed by neemazal, neem oil and triflumezopyrim with 4554.2 kg/ha. Yield in all the treatments were significantly superior to control plot which showed a yield of 3595.6 kg/ha (**Table 2.3.2.2**).

Insecticide Botanicals Evaluation Trial (IBET) was carried out at 25 locations across the country to evaluate performance of various treatments having combinations of commercially available neem formulation, effective plant oils along with recommended insecticides against major insect pests of rice and consequent impact on natural enemies and grain yield during kharif, 2022. Based on the performance of the various treatment combinations in controlling the pest damage at various locations, all insecticides module was found to be superior in reducing stem borer damage at both vegetative and reproductive phases compared to other insecticide-botanical modules. Among combinations, lowest silver shoot damage was recorded in all insecticide treatment which was on par with other treatments. Combination of Neemazal, neem oil and triflumezopyrim treatment was found to effective against BPH. Against WBPH and GLH all insecticides combination was found to be the most effective treatment. Against leaf folder also insecticides module was effective in reducing leaf damage. All insecticide combination treatments were found moderately effective in reducing damage by whorl maggot, gundhibug and grasshopper pests. There was no significant difference in natural enemy (mirid,

spider and coccinellid) populations among treatments, signifying that both insecticides and botanicals are safe to beneficial organisms. Among various treatments, all insecticides treatment recorded highest mean yield of 4991.0 kg/ha followed by treatment consisting of neemazal, neem oil and triflumezopyrim giving yield of 4554.2 kg/ha.

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

								St	Stem borer Damage (% Dead hearts)	r Damaç	e (% De	ad heart	s)						
<u>ნ</u> 2	Treatment details			AE	ABP			さ	CHP	ပ	CTC				LDN				GNV
		30DT	40DT	50DT	TO09	65DT	T007	55DT	75DT	30DT	E0DT	30DT	35DT		45DT	55DT	E0DT	70DT	50DT
l	Botanical-Insecticide 1	5.1b	4.6b	3.9b	3.6b	3.7b	2.7b	4.2b	4.9c	4.7c	2.5c	3.4a	3.4b		3.7b	4.5a	2.5c	3.1c	2.5bc
l	Botanical-Insecticide 2	5.5b	5.1b	4.4b	3.7b	3.6b	2.9b	5.7b	7.1a	4.7c	3.0c	4.0a	3.1b	3.5b	3.4b	3.9b	2.7c	3.3c	3.5bc
	All Botanical	5.8b	4.5b	4.1b	3.5b	3.5b	3.1b	4.3b	5.3bc	6.5b	4.3b	4.5a	3.4b		3.7b	4.5b	4.3b	4.7b	4.4b
1	All Insecticide	5.3b	5.2b	4.5b	3.8b	3.3b	3.2b	1.2c	2.0d	5.9d	1.6d	4.5a	0.9c	1.8c	1.1c	1.8c	2.0c	2.5c	1.7c
	Control (Water Spray)	7.8a	7.1a	6.3a	6.7a	6.7a	6.8a	8.5a	11.0a	8.7a	6.1a	4.7a	5.0a	5.2a	5.8a	6.4a	7.3a	7.8a	10.1a
l																			

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

ō							S	tem bor	er Dama	ge (% D	Stem borer Damage (% Dead hearts)	rts)					
<u> </u>	Treatment details		JDP		KJT	П	KRK	×	KNL	M	MNC	MND	٥	MS	MSD	Ž	NWG
O		30DT	LQ0S	T007	30DT	LQ0S	30DT	LQ0S	45DT	45DT	E0DT	30DT	1DD	30DT	50DT	30DT	50DT
_	Botanical-Insecticide 1	0.7a	3.1bc	2.7c	9.2a	3.7b	1.6a	10.9a	1.8b	5.5b	8.0b	6.5bc	2.4c	8.7c	7.7c	3.0b	11.7b
2	Botanical-Insecticide 2	1.7a	4.1bc	8	9.0a	3.6b	1.8a	6.4ab	2.4ab	6.7b	49.7	49.7	8.4b	5.0d	4.2d	3.3b	13.0b
3	All Botanical	4.8a	96.9	11.0b	9.0a	3.5b	3.6a	9.1ab	2.4ab	6.7b	7.3b	14.14a	9.4b	14.3b	11.9b	3.4b	11.6b
4	All Insecticide	0.7a	0.6c	2.1d	9.7a	2.1c	1.5a	3.8b	1.0b	4.5b	1.7c	2.7c	1.3c	2.3e	0.8e	2.5b	4.1c
2	Control (Water Spray)	4.4a	16.5a	20.7a	9.8a	9.8a	1.7a	7.9ab	3.8a	10.9a	13.3a	15.9a	19.2a	23.5a	29.9a	5.2a	21.6a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

ō							Stem bc	rer Dam	аде (% <u>Г</u>	Stem borer Damage (% Dead hearts)	ts)						
<u> </u>	Treatment details		NVS		Z	NWG					×	MGL					Mean
Š.		30DT	LQ0S	65DT	30DT	TQ0	33DT	38DT	42DT	50DT	57DT	61DT	L G69	73DT	TDT7	85DT	
_	Botanical-Insecticide 1	12.0bc	12.0bc 10.6bc 12.9c	12.9c	3.0b	11.7b	4.8a	7.1a	5.8a	40.7	3.2a	2.4ab	3.1ab	1.1ab	2.9b	2.6a	5.0bc
2	Botanical-Insecticide 2	9.7bc	9.2bc	16.1c	3.3b	13.0b	5.3a	6.3a	4.9a	40.7	3.3a	3.4ab	3.4ab	1.5ab	4.0ab	37a	5.9abc
က	All Botanical	131ab	11.4b 16.1b	16.1b	3.4b	11.6b	4.5a	6.6a	5.2a	96.9p	3.2a	2.7ab	2.9bc	1.7ab	4.4a	3.3a	8.6ab
4	All Insecticide	8.5c	8.3c	8.7d	2.5b	4.1c	5.7a	8.0a	4.8a	3.7c	1.3b	2.7b	1.0c	1.0b	1.8b	2.3a	3.1c
2	Control (Water Spray)	17.0a	14.0a 18.6a	18.6a	5.2a	21.6a	5.0a	5.2a	5.7a	9.30a	4.3a	3.7a	4.9a	2.2a	4.1a	4.3a	9.5a
1	NA	ellineie ene en	and the different	70 0-0 10 1							•						

Botanical-Insecticide 1:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l (60-65 DAT)
Botanical-Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT) , Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

SI.	Treatment details			;	Stem Bo	rer Dama	ge (% V	/hite ears)		
No.	Treatment details	ABP	CHP	CTC	GNV	JDP	KJT	KUL	KRK	MNC	MND
1	Botanical-Insecticide 1	2.2b	2.5bc	4.7cd	4.2bc	20.0ab	1.7b	2.4bc	6.9a	6.6bc	4.9c
2	Botanical-Insecticide 2	2.1b	3.8b	6.2c	4.4bc	24.9ab	1.5b	3.5ab	9.3a	6.6bc	8.8bc
3	All Botanical	1.8b	3.1bc	10.2b	7.5ab	27.9ab	1.6b	3.3abc	7.8a	7.0b	13.3b
4	All Insecticide	2.3b	1.1c	2.8d	2.0c	15.2b	0.5c	2.1c	1.9b	4.0c	3.2c
5	Control (Water Spray)	7.0a	8.9a	14.0a	11.3a	30.6a	6.4a	3.9a	7.1a	10.7a	22.6a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

SI.	Treatment details			Stem	Borer Da	amage (%	White	ears)			Mean
No.	Treatment details	MSD	NVS	NWG	PUS	PTB	RNR	RPR	TTB	WGL	Mean
1	Botanical-Insecticide 1	6.0bc	10.7bc	23.6b	4.7d	29.4ab	1.3a	13.8c	4.8ab	2.6a	8.1b
2	Botanical-Insecticide 2	3.7cd	10.5bc	23.2b	6.5c	22.7b	1.7a	18.0b	6.6a	2.8a	8.7b
3	All Botanical	7.5b	13.0b	24.0b	8.9b	26.9ab	1.8a	17.2b	6.2a	1.3a	10.0b
4	All Insecticide	1.0d	8.7c	6.5c	4.2d	25.9ab	0.8a	11.1c	1.8b	2.3a	5.1b
5	Control (Water Spray)	28.0a	18.9a	30.8a	14.9a	39.3a	2.1a	30.9a	6.7a	2.6a	15.6a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

					Ga	III midge	Damag	e (% Silv	er Shoo	its)			
S. No.	Treatment details			Al	3P			Cl	ΗР	GI	NV	JE)P
140.		30DT	40DT	50DT	60DT	65DT	70DT	55DT	75DT	30DT	55DT	30DT	50DT
1	Botanical-Insecticide 1	7.5a	7.5bc	7.2bc	6.2b	5.8b	5.2b	17.4b	9.7b	5.3b	8.5ab	18.4b	13.9c
2	Botanical-Insecticide 2	9.0a	8.8b	7.8bc	6.5b	6.1b	6.0b	19.1b	11.0b	4.3b	4.6b	20.8b	25.9b
3	All Botanical	7.3a	6.4c	6.3c	5.7b	5.2b	5.2b	15.3b	7.7b	6.4b	8.6ab	17.8b	30.0b
4	All Insecticide	7.5a	7.7bc	8.4b	6.8b	6.1b	6.5b	19.3b	9.8b	0.0c	2.8b	7.9c	11.5c
5	Control (Water Spray)	8.5a	12.1a	10.6a	11.8a	10.1a	12.1a	32.5b	21.3a	13.6a	13.5a	33.9a	62.2a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

•					Gall m	idge Dar	nage (%	Silver S	Shoots)				
S. No.	Treatment details	JDP					W	GL					Mean
140.		70DT	33DT	38DT	42DT	50DT	57DT	61DT	69DT	73DT	77DT	85DT	
1	Botanical-Insecticide 1	14.1c	6.4a	7.8a	7.1a	5.3a	8.7a	10.9a	12.5a	12.9a	10.1a	8.0a	9.4b
2	Botanical-Insecticide 2	25.6b	6.4a	9.3a	6.1a	5.3a	7.8a	9.5a	11.6a	10.4a	10.0a	6.1a	10.3b
3	All Botanical	30.9c	6.2a	10.1a	5.8a	5.2a	8.7a	12.7a	14.5a	11.8a	8.9a	6.4a	10.5b
4	All Insecticide	7.1c	6.8a	7.9a	6.3a	6.2a	7.7a	10.1a	13.2a	10.3a	9.8a	7.4a	8.1b
5	Control (Water Spray)	47.3a	6.6a	8.1a	6.0a	4.8a	9.3a	10.0a	12.5a	10.9a	8.7a	6.3a	16.2a

Botanical-	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l(60-65
Insecticide 1:	DAT)
Botanical- Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

ú								Brown	Planthop	Brown Planthopper (No./10hills)	'10hills)					
o Z	Treatment details		B	BPT		CHP		9	GNV				NDL		K	KUL
į		35DT	38DT	53DT	L Q89	75DT	40DT	LO09	80DT	100DT	64DT	68DT	76DT	86DT	53DT	68DT
_	Botanical-Insecticide 1	43.0a	23.0b	32.0a	11.0a	49.6b	50.1b	40.1c	35.9c	29.4c	21.5a	48.5a	326.5a	116.5bc	83.0a	99.0b
7	Botanical-Insecticide 2	28.5a	12.5b	34.5a	14.0a	18.6c	41.9c	36.0c	29.9c	21.5d	29.5a	11.0a	49.5c	94.0c	76.0a	17.5d
က	All Botanical	67.5a	33.5b	.37.0a	20.0a	57.3b	56.2b		44.2b	39.2b	29.0a	31.0ab	178.0abc	197.0ab	87.0a	73.5c
4	All Insecticide	30.0a	16.5b	27.0a	11.0a	12.3c	29.2d	24.7d	21.8d	17.1d	9.0a	27.0ab	121.5bc	142.5bc	87.0a	24.0d
2	Control (Water Spray)	48.5a	66.5a	37.0a	12.0a	76.3a	66.0a	70.5a	75.8a	81.5a	11.5a	25.5ab	255.5ab	281.5a	100.5a	121.5a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

Tre						DIOM	Brown Planthopper (No./Tunilis)	pper (No	(SIIIIII)						
_	Treatment details	MNC	M	D		MTU		S	RPR			MGL			Mean
		72DT	E0DT	80DT	LQ09	70DT	80DT	50DT	70DT	61DT	TG69	73DT	TQ77	85DT	
Bot	Botanical-Insecticide 1	41.5c	41.5c 16.0abc	9.5bc	231.2ab	913.3a	572.3a	11.2b	7.7b	24.5a	34.58	36.0a ⁴	40.2b	41.5ab	107.0ab
Bot	Botanical-Insecticide 2	45.5c	45.5c 13.2bc	9.0c	97.0b	112.5b	106.3	9.7b	13.7bc	25.0a	36.2a	7.5c	10.0c	13.0c	36.0b
W	All Botanical	86.2a	19.7ab	13.7b	242.75a	947.5a	590.8	11.7b	16.7b	23.5a	36.0a	a 38.7b	36.0b	33.2b	110.7ab
A	All Insecticide	80.7b	8.7c	3.2c	104.5ab	63.5b	81.0b	10.5k) 11.0c 2	4.78	з 36.2а	6.5c	8.7c	12.0c	37.5b
Co	Control (Water Spray) 97.2a	97.2a	24.5a	31.2a	193.2ab 1019.3a	1019.3a	595.3a	21.2a	34.5a	5.08	37.5a	49.2a	62.0a	48.7a	127.4a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

					Whiteb	Whitebacked Planthopper (No./10hills)	:hopper (No	./10nilis)			
S. No.	Treatment details		BPT	Ļ			ฮ	GNV		KNL	٦٢
		35DT	38DT	53DT	68DT	40DT	LQ09	80DT	100DT	53DT	68DT
_	Botanical-Insecticide 1	47.0a	23.5b	26.5a	11.0a	151.3b	133.6c	114.3b	74.3b	17.5b	22.0b
2	Botanical-Insecticide 2	33.5a	12.5b	32.0a	12.5a	134.3c	11.0d	71.0c	47.0c	17.5b	5.5cd
3	All Botanical	71.0a	36.5ab	29.5a	17.0a	166.6a	149.3b	123.3b	85.6b	14.5b	11.5c
4	All Insecticide	34.5a	17.0b	30.0a	10.0a	103.3d	90.3e	49.6d	30.0d	14.0b	4.0d
2	Control (Water Spray)	50.0a	65.0a	36.0a	11.0a	165.0a	177.6a	182.6a	192.3a	30.0b	37.0a
Apane in a colur	Jeans in a column followed by different letters are significantly differ	ifferent at D=0 05									

Botanical-Insecticide 1:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l (60-65 DAT)
Botanical-Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT) , Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

				White	ebacked I	Planthop	per (No./10	hills)			
S. No.	Treatment details	MN	ID		MTU			NWG		RPR	Mean
110.		60DT	80DT	60DT	70DT	80DT	45DT	60DT	75DT	70DT	
1	Botanical-Insecticide 1	14.0bc	6.7bc	27.5a	104.5a	67.0a	102.0bc	168.0b	63.0c	3.5a	61.9ab
2	Botanical-Insecticide 2	8.2cd	3.5c	10.5b	0.7b	9.0b	107.0abc	170.0b	42.0c	3.2a	38.4b
3	All Botanical	17.7ab	9.2b	28.7a	152.0a	89.0a	108.0ab	165.0b	87.0b	3.7a	71.8ab
4	All Insecticide	5.5d	2.0c	10.2b	6.0b	11.2b	84.0a	125.0c	57.0c	3.2a	36.1b
5	Control (Water Spray)	22.5a	18.0a	25.2a	152.0a	93.2a	128.0a	226.0a	249a	4.7a	98.1a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

0.1						Leaf fo	lder (No	./10hills)				
SI. No.	Treatment details			AE	3P					BPT		
140.		30DT	40DT	50DT	60DT	65DT	70DT	35DT	42DT	53DT	60DT	68DT
1	Botanical-Insecticide 1	5.3b	3.3c	4.0c	3.2c	2.7b	2.7b	9.1ab	2.5b	16.2b	12.8b	8.4a
2	Botanical-Insecticide 2	5.2b	3.5c	4.3bc	2.9c	3.1b	3.6b	10.2ab	2.4b	21.8a	10.6b	10.2a
3	All Botanical	4.9b	4.5c	5.6b	3.7c	2.7b	2.6b	11.3a	3.1b	15.1b	11.0b	9.2a
4	All Insecticide	5.2b	6.5b	4.3bc	5.3b	2.8b	3.4b	8.7ab	2.4b	15.4b	10.6b	9.8a
5	Control (Water Spray)	8.3a	8.3a	11.5a	10.1a	6.7a	7.6a	8.2b	10.5a	15.5b	20.7a	9.8a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

0.						Leaf fol	der (% D	amaged	Leaves)				
SI. No.	Treatment details		GNV		J[)P	K	RK	Kl	JL		MNC	
NO.		60DT	90DT	30DT	50DT	70DT	30DT	50DT	57DT	72DT	37DT	57DT	72DT
1	Botanical-Insecticide 1	3.5bc	3.6bc	2.1b	3.1b	2.7dc	2.8a	2.6a	6.3ab	5.4b	8.8b	5.8bc	10.0ab
2	Botanical-Insecticide 2	2.5c	2.8c	2.7b	2.9b	3.7bc	2.7a	2.4a	6.6a	6.1b	8.1b	6.8b	7.8bc
3	All Botanical	4.7b	4.6b	2.5b	3.2b	4.7b	2.1a	2.3a	7.6a	6.4b	7.7b	7.3b	8.1abc
4	All Insecticide	1.0d	1.6d	2.2b	1.4b	2.4d	2.4a	0.5b	2.0b	2.6c	6.3b	3.9c	6.4c
5	Control (Water Spray)	7.6a	9.2a	6.0a	8.3a	10.6a	3.5a	1.9ab	8.5a	9.2a	20.1a	10.9a	10.3a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

SI.					Leaf fo	lder (% Da	amaged L	eaves)				
No.	Treatment details	MI	ND	MS	SD		NVS			NWG		Mean
NO.		30DT	50DT	30DT	50DT	30DT	50DT	65DT	30DT	45DT	60DT	
1	Botanical-Insecticide 1	4.5c	3.4c	10.1bc	4.2bc	11.1c	12.0bc	12.5c	5.2b	10.2b	16.2b	6.5bc
2	Botanical-Insecticide 2	6.1bc	4.9bc	7.0cd	2.2cd	9.9c	11.9bc	12.0c	5.0b	10.5b	16.6b	6.6bc
3	All Botanical	8.9b	7.0b	14.2b	5.6b	13.1ab	14.2b	16.0b	5.2b	10.6b	16.8ab	7.4b
4	All Insecticide	3.0c	2.6c	3.4d	1.0d	6.5d	10.2c	9.2d	1.8c	5.0c	8.2c	4.7c
5	Control (Water Spray)	14.0a	15.4a	22.2a	12.1a	15.2a	18.2a	21.2a	7.3a	13.2a	22.4a	11.6a

Botanical-	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l(60-65
Insecticide 1:	DAT)
Botanical-	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
Insecticide 2:	Neemazai 176 EC 2min (25-30 DA1), Neemoii 10 min (45-30 DA1), 11mumezopymin 1076 3C 0.40min (00-00 DA1)
All Botanical:	Neemazal 1% EC 2ml/I (25-30 DAT), Eucalyptus oil 2ml/I (45-50 DAT), Neem oil 10ml/I (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

			(Green Le	eafhopp	er (No./1	0hills)		
S. No.	Treatment details			BP.	Т			GI	VV
		35DT	38DT	53DT	56DT	68DT	71DT	40DT	60DT
1	Botanical-Insecticide 1	8.0ab	30.5ab	39.5a	33.0a	22.0a	11.0a	31.3c	25.3c
2	Botanical-Insecticide 2	27.0b	14.5b	45.5a	25.5b	23.5a	14.5a	25.3d	21.0c
3	All Botanical	77.5a	34.0ab	33.0a	31.0a	22.5a	14.5a	39.0b	33.0b
4	All Insecticide	38.0ab	14.0b	38.0a	28.0b	21.5a	12.5a	18.6e	13.6d
5	Control (Water Spray)	41.5ab	57.5a	52.5a	58.5a	16.5a	18.0a	46.0a	50.3a

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

S.				Green Leaf	fhopper (l	No./10hill	s)		
No.	Treatment details	G	NV		JDP		MS	SD	Mean
1101		80DT	100DT	30DT	50DT	70DT	30DT	50DT	
1	Botanical-Insecticide 1	21.0c	16.6c	16.5a	15.0a	9.0b	117.7c	121.7c	37.2b
2	Botanical-Insecticide 2	15.3c	9.6d	17.5a	12.0b	9.5b	64.5d	51.7d	25.1b
3	All Botanical	28.0b	22.3b	13.5ab	12.0b	16.5b	139.7b	134.7b	43.4ab
4	All Insecticide	8.3d	4.0e	9.0b	8.5b	8.0b	32.2e	25.0e	18.6b
5	Control (Water Spray)	54.0a	57.0a	17.5a	30.0a	36.5a	244.7a	250.5a	68.7a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

		Rice Hispa	(% Damage	d Leaves)	
S. No.	Treatment details	KRK	R	CI	Mean
		30DT	29DT	35DT	
1	Botanical-Insecticide 1	2.7a	59.2a	33.5b	31.8a
2	Botanical-Insecticide 2	1.9a	58.2a	36.2b	32.1a
3	All Botanical	2.5a	60.7a	35.5b	32.9a
4	All Insecticide	1.7a	60.2a	12.7c	24.8a
5	Control (Water Spray)	1.7a	60.0a	65.0a	42.2a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

S.			W	horl Ma	ggot (%	Damage	ed Leave	s)	
No.	Treatment details			NDL				JDP	
1101		26DT	30DT	36DT	46DT	51DT	30DT	50DT	70DT
1	Botanical-Insecticide 1	3.7b	4.8a	4.1a	2.8a	1.6b	4.9b	3.2bc	3.6c
2	Botanical-Insecticide 2	5.1ab	5.5a	4.0a	4.1a	2.5a	5.3b	5.5b	5.9b
3	All Botanical	5.1ab	6.1a	4.6a	3.1a	2.5a	5.5b	5.7b	5.4b
4	All Insecticide	6.5a	7.0a	3.8a	3.6a	2.5a	3.2b	2.4c	3.3c
5	Control (Water Spray)	4.9a	5.4a	5.8a	3.0a	2.8a	11.1a	10.9a	10.9a

Botanical-	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l(60-65
Insecticide 1:	DAT)
Botanical- Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

				Whorl M	aggot (%	6 Damag	ed Leave	es)		
S. No.	Treatment details		RI	NR		P	ГВ	TTI	В	Mean
1101		41DT	48DT	61DT	70DT	15DT	25DT	30DT	50DT	
1	Botanical-Insecticide 1	0.9a	0.8ab	1.8a	1.1a	8.1b	9.6a	2.3b	4.4a	3.6b
2	Botanical-Insecticide 2	1.3a	1.4ab	1.6a	1.6a	7.6b	9.1a	3.3ab	3.7ab	4.2ab
3	All Botanical	1.3a	1.5a	1.8a	1.2a	7.9b	6.9a	1.6b	3.7ab	4.2ab
4	All Insecticide	1.7a	0.7b	1.4a	1.4a	6.8b	8.8a	1.5b	2.1b	3.5b
5	Control (Water Spray)	0.9a	0.8b	1.6a	1.5a	13.0a	9.8a	5.1a	4.6a	5.7a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

S. No.	Treatment details	Gı		ıg (% Gr ıage) VS	ain	Mean
		70DT	73DT	80DT	83DT	
1	Botanical-Insecticide 1	32.0a	15.5bc	26.0a	15.2c	22.1a
2	Botanical-Insecticide 2	28.7a	15.0c	23.2a	16.0c	20.7a
3	All Botanical	27.0a	19.5b	26.5a	20.2b	23.3a
4	All Insecticide	30.5a	10.5d	28.2a	11.5d	20.1a
5	Control (Water Spray)	30.5a	32.5a	25.0a	29.0a	29.2a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

		G	rassho	pper (%[Damage	d Leaves	s)	
S. No.	Treatment details			KI	HD.			Mean
		30DT	37DT	50DT	53DT	60DT	63DT	
1	Botanical-Insecticide 1	9.4b	5.1b	7.4c	4.9c	8.2ab	2.7c	6.2ab
2	Botanical-Insecticide 2	8.8b	4.4b	8.6ab	6.0b	7.9bc	2.9c	6.4ab
3	All Botanical	9.5b	4.9b	8.7a	5.6bc	7.0c	4.1b	6.6ab
4	All Insecticide	7.0c	2.7c	8.0bc	3.0d	7.4bc	2.6c	5.1b
5	Control (Water Spray)	11.2a	8.4a	8.3ab	9.4a	9.2a	6.3a	8.8a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Insect pest incidence in different treatments, IBET, Kharif 2022

		C	occinell	ids (No	o./10hi	ls)	
S. No.	Treatment details	BPT		MNC		KUL	Mean
		53DT	37DT	57DT	72DT	75DT	
1	Botanical-Insecticide 1	3.5b	17.0a	17.7a	6.7b	7.5a	10.4a
2	Botanical-Insecticide 2	4.0b	13.7ab	12.5a	9.7ab	7.5a	9.4a
3	All Botanical	5.0b	10.0bc	12.2a	11.2a	7.5a	9.1a
4	All Insecticide	6.5ab	7.7c	12.2a	9.2ab	7.9a	8.7a
5	Control (Water Spray)	9.0a	8.7c	10.7a	7.5b	6.5b	8.4a

Botanical- Insecticide 1:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l(60-65 DAT)
Botanical- Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.3.2.1 Incidence of Natural enemies in different treatments, IBET, Kharif 2022

KUL MTU MTU MTU MTU MTC MNC MNC MNC MNC MNC MPC MPC MPC MPC MPC MPC MTC MTC MPC MPC <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Mi</th> <th>Mirid bugs (No./10 hills)</th> <th>(No./10</th> <th>hills)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									Mi	Mirid bugs (No./10 hills)	(No./10	hills)						
75DT 40DT 50DT 60DT 70DT 80DT 80DT 57DT 72 2.5c 17.5a 24.0a 23.5ab 34.7a 22.2ab 10.0c 27.2a 34.2a 3.5abc 18.5a 31.0a 15.2b 13.7b 20.0b 14.7a 26.0a 36.0a 5.0ab 20.0a 24.5a 33.0a 27.0a 11.5bc 28.7a 35.5a 3.0bc 19.0a 35.0a 22.5ab 33.0a 28.0a 14.2ab 28.0a 35.2a 5.5a 18.0a 22.5ab 33.0a 28.0a 14.2ab 28.0a 35.2a	Treatment details BPT	BPT	BPT	BPT	Τ				KNL			MTU			NVS	M	SC SC	Moon
2.5c 17.5a 24.0a 23.5ab 34.7a 22.2ab 10.0c 27.2a 34.2a 3.5abc 18.5a 31.0a 15.2b 13.7b 20.0b 14.7a 26.0a 36.0a 5.0ab 20.0a 24.5a 33.0a 27.0a 11.5bc 28.7a 35.5a 3.0bc 19.0a 35.0a 20.0ab 12.5b 18.7b 9.3c 27.5a 38.5a 5.5a 18.0a 35.0a 22.5ab 33.0a 28.0a 14.2ab 28.0a 35.2a	35DT 38DT 53DT 56DT 6	53DT 56DT	53DT 56DT	26DT		9	68DT	71DT	75DT	40DT	100S	LO09	TO07	80DT	80DT	57DT	72	Med
3.5abc 18.5a 31.0a 15.2b 13.7b 20.0b 14.7a 26.0a 36.0a 5.0ab 20.0a 24.5a 33.0a 27.0a 11.5bc 28.7a 35.5a 3.0bc 19.0a 35.0a 20.0ab 12.5b 18.7b 9.3c 27.5a 38.5a 5.5a 18.0a 35.0a 22.5ab 33.0a 28.0a 14.2ab 28.0a 35.2a	Botanical-Insecticide 1 19.0a 10.1a 17.0a 10.1a 7	10.1a	10.1a	10.1a		-	7.0a	10.1a	2.5c	17.5a		23.5ab	34.7a	22.2ab	10.0c	27.2a	34.2a	17.9a
5.0ab 20.0a 28.0a 24.5a 33.0a 27.0a 11.5bc 28.7a 35.5a 3.0bc 19.0a 35.0a 20.0ab 12.5b 18.7b 9.3c 27.5a 38.5a 5.5a 18.0a 35.0a 22.5ab 33.0a 28.0a 14.2ab 28.0a 35.2a	Botanical-Insecticide 2 15.5a 7.8a 7.8a 7	7.8a 14.0a 7.8a	14.0a 7.8a	7.8a		7	7.5a	7.8a	3.5abc	18.5a		15.2b	13.7b	20.0b	14.7a	26.0a	36.0a	19.9a
3.0bc 19.0a 35.0a 20.0ab 12.5b 18.7b 9.3c 27.5a 38.5a 5.5a 18.0a 35.0a 22.5ab 33.0a 28.0a 14.2ab 28.0a 35.2a	All Botanical 25.0a 9.6a 19.5a 9.6a (19.5a 9.6a	19.5a 9.6a	9.6a		۳	6.5a	9.6a	5.0ab	20.0a	28.0a	24.5a	33.0a	27.0a	11.5bc	28.7a	35.5a	19.5a
5.5a 18.0a 35.0a 22.5ab 33.0a 28.0a 14.2ab 28.0a 35.2a	All Insecticide 24.0a 9.4a 21.5a 9.4a	9.4a 21.5a 9.4a	9.4a 21.5a 9.4a	9.4a			7.5a	9.4a	3.0bc	19.0a	35.0a	20.0ab	12.5b	18.7b	9.3c	27.5a	38.5a	17.6a
	Control (Water Spray) 22.5a 10.3a 21.0a 10.3a	10.3a	10.3a	10.3a			6.0a	10.3a	5.5a	18.0a	35.0a	22.5ab	33.0a	28.0a	14.2ab	28.0a	35.2a	19.9a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.1 Incidence of Natural enemies in different treatments, IBET, Kharif 2022

ú									No of s	No of spiders/10 hills	0 hills							
o Z	Treatment details		BPT	Τc					NDF	٦(KNL		KHD	Q	
S		53DT	56DT	68DT	71DT	30DT	36DT	46DT	51DT	55DT	64DT	68DT	76DT	75DT	30DT	33DT	50DT	57DT
_	Botanical-Insecticide 1	8.0ab	7.0ab	9.0b	7.0a	12.5a	18.0a	13.5a	13.5a	9.5a	8.5a	17.0a	13.0a	2.0a	3.6a	3.3ab	4.3a	4.3b
2	Botanical-Insecticide 2	9.0a	9.5ab	15.5a	4.5a	17.5a	12.0a	14.0a	12.0a	8.5a	12.0a	17.5a	13.0a	2.5a	4.6a	4.0ab	5.6a	3.6bc
3	All Botanical	8.5ab	6.5b	14.0a	6.0a	15.5a	15.5a	13.0a	12.5a	9.0a	11.0a	17.5a	12.0a	2.0a	4.0a	3.0b	5.3a	3.3bc
4	All Insecticide	7.5b	11.0a	16.5a	5.0a	16.0a	16.5a		12.0a	10.0a	13.0a	16.5a	15.5a	1.5a	5.0a	4.0ab	5.0a	2.6c
2	Control (Water Spray)	7.5b	9.5ab	14.5a	4.5a	17.0a	13.5a	18.5a	13.5a	11.0a	10.0a	15.0a	16.0a	3.5a	5.0a	5.0a	5.3a	9.0a

Table 2.3.2.1 Incidence of Natural enemies in different treatments, IBET, Kharif 2022

ú									~	lo of sp	No of spiders/10 hills	hills							
o S	Treatment details			KHD	ID O				MNC		QNW		MTU	D.		NVS		MGL	
:		50DT	53DT	53DT 60DT 67DT	l	E0DT	63DT	37DT	57DT	72DT	TQ09	40DT	55DT	E0DT	70DT	E0DT	33DT	38DT	42DT
_	Botanical-Insecticide 1	4.3a	4.0a	5.0a	9.09	5.0a	4.3a	8.5ab	10.2ab	8.7a	17.5a	24.0a	23.5ab	34.7a	22.2ab	12.0c	3.7a	6.5a	16.7ab
2	Botanical-Insecticide 2	5.6a	4.6a	6.0a	5.3b	6.0a	4.6a	8.2ab	8.7ab	6.7a	18.5a	31.0a	15.2b	13.7b	20.0b	15.5b	7.2a	5.7a	14.0c
က	All Botanical	5.3a	4.6a	5.3a	4.6b	5.3a	5.0a	40.7	90.9	8.7a	20.0a		24.5a	33.0a	27.0a	13.0bc	5.7a	7.2a	17.0a
4	All Insecticide	5.0a	4.3a	6.3a	9.09	6.3a	5.0a	8.7ab	11.5a	8.7a	19.0a	35.0a	20.0ab	12.5b	18.7b	11.5c	6.2a	10.7a	12.5c
2	Control (Water Spray)	5.3a	5.0a	6.6a	7.6a	6.6a	6.0a	10.7a	11.0a	8.5a	18.0a	35.0a	22.5ab	33.0a	28.0a	22.2a	4.5a	8.7a	14.5bc
leans in	eans in a column followed by different letters are significantly different at P=0.05	atters are sic	unificantly c	different at	P=0.05	1													

Botanical-Insecticide 1:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l(60-65 DAT)
Botanical-Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT) , Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.3.2.1 Incidence of Natural enemies in different treatments, IBET, Kharif 2022

				No of s	spiders/10	hills			
S. No.	Treatment details				WGL				Mean
		50DT	57DT	61DT	69DT	73DT	77DT	85DT	
1	Botanical-Insecticide 1	16.0a	13.2a	11.7ba	15.0a	16.0a	12.2a	14.5a	10.8a
2	Botanical-Insecticide 2	14.0a	11.7a	11.5b	13.0b	15.5a	14.0a	11.2a	10.5a
3	All Botanical	14.7a	13.2a	12.7ab	13.2ab	17.0a	12.7a	13.2a	11.2a
4	All Insecticide	14.7a	11.0a	13.2ab	15.0a	14.5a	14.0a	13.7a	11.0a
5	Control (Water Spray)	15.0a	12.7a	15.0a	14.5a	15.5a	14.2a	12.5a	12.4a

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.2 Grain Yield in different treatments, IBET, Kharif 2022

S.	Treatment details					Yield (Kg/l	na)			
No.	Treatment details	ABP	BPT	CHP	CTC	GNV	NDL	JDP	KHD	KJT
1	Botanical-Insecticide 1	3250.0a	5525.0a	4470.5b	3800.0a	6400.0c	4750.0ab	5700.0ab	7825.0b	3120.0b
2	Botanical-Insecticide 2	3250.0a	5800.0a	4411.7bc	3600.0c	8000.0b	4700.0ab	5400.0bc	8100.0ab	3400.0a
3	All Botanical	3000.0a	4200.0a	4235.2c	3250.0d	5600.0c	4900.0a	5050.0cd	8100.0ab	3200.0b
4	All Insecticide	3800.0a	5175.0a	5000.0a	4050.0a	9600.0a	4950.0a	6050.0a	8225.0a	3440.0a
5	Control (Water Spray)	3000.0a	4275.0a	3176.4d	2600.0e	4000.0d	4400.0b	4750.0d	7300.0c	2320.0c

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.2 Grain Yield in different treatments, IBET, Kharif 2022

S.	Treatment details				Yie	eld (Kg/ha)				
No.	rreatificiti details	KRK	KUL	LDN	MND	MTU	MSD	MNC	NVS	NWG
1	Botanical-Insecticide 1	4480.0b	3030.0b	6511.6b	4160.0ab	2400.0b	3250.0b	1160.0b	4050.0b	2901.0ab
2	Botanical-Insecticide 2	5040.0ab	3030.0b	6651.1b	3880.0abc	3650.0a	3150.0b	1200.0b	4050.0b	2902.0ab
3	All Botanical	4760.0b	2920.0b	6418.6c	3160.0bc	2800.0b	2250.0c	1200.0b	3600.0c	2838.0b
4	All Insecticide	6400.0a	3200.0a	7116.2a	4920.0a	3550.0a	3650.0a	1440.0a	4500.0a	3468.0a
5	Control (Water Spray)	4720.0b	2628.0c	6093.0d	2600.0c	2600.b	2150.0c	1040.0b	3200.0d	2319.0b

Means in a column followed by different letters are significantly different at P=0.05

Table 2.3.2.2 Grain Yield in different treatments, IBET, Kharif 2022

S.	Treatment details			١	/ield (Kg/ha)				Mean
No.	Treatment details	PTB	PUS	RCI	RNR	RPR	TTB	WGL	IVICALI
1	Botanical-Insecticide 1	3218.7a	5643.9a	4600.0ab	3750.0a	6700.0b	4160.0b	5543.1bc	4416.0ab
2	Botanical-Insecticide 2	3250.0a	5227.2a	4400.0b	4200.0a	6650.0b	4160.0b	5754.0ab	4554.2a
3	All Botanical	3062.5a	4583.3ab	3800.0b	4150.0a	6600.0b	3920.0c	5183.5c	4111.2ab
4	All Insecticide	3312.5a	5113.6ab	5350.0a	4600.0a	7150.0a	4640.0a	6076.4a	4991.0ab
5	Control (Water Spray)	3062.5a	3901.5b	2300.0c	3800.0a	6050.0c	2880.0d	4724.7d	3595.6b

Botanical- Insecticide 1:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l(60-65 DAT)
Botanical- Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

2.4 Optimum Pest Control Trial (OPCT)

The trial was constituted to evaluate the performance of the identified multiple pest resistant rice cultures under protected and unprotected conditions against the pest damages in a location. The trial was conducted at 10 locations *viz.*, Ambikapur, Cuttack, Chinsurah, Gangavati, IIRR, Ludhiana, Raipur, Warangal, Titabar and Kaul. But the trial was vitiated at Kaul. Nine insect pest resistant cultures *viz.*, V1-CUL M9, V2-CR 3006-8-2, V3-CR Dhan 317, V4- Akshaydhan PYL, RP5587-273-1-B-B-B, KMR 3, Suraksha, W1263, RP2068 -18-3-5 along with the susceptible check TN1 were raised in 3 replications in a split plot design with main treatments being protected and unprotected conditions and varieties as sub plots. Observations on pest incidence were recorded along with the grain yield. At Warangal and Ludhiana observations were recorded before and after imposition of insecticide treatments. Insecticide treatments were taken up based on the intensity of the damage. The general information pertaining to the trial is given in (**Table 2.4.1**).

Table 2.4.1 General information pertaining to OPCT trial, Kharif 2022

Location	Chemical	Date of insecticide application	Time of application	Observations recorded
Ambikapur	NM	10-06-2022	56 DAT	SBDH, SBWE, SS
Chinsurah	Cartap hydrochloride (Kritap)	08-09-2022, 28-09-2022	31 DAT, 51 DAT	SBDH, SBWE
Cuttack	NM	09-11-2022	87 DAT	LF , GrH
Gangavati	Fipronil 0.3 GR	23-08-2022	5 DAT	SBDH, SBWE, SS, PH, NE- mirid, spiders, dragonflies & damsel flies
IIRR	Fipronil 0.3GR	20-09-2022	22 DAT	SBWE
Ludhiana	Chlorantraniliprole 18.5 SC @ 60 ml/acre (Coragen)	12-09-2022	50 DAT	SBDH, SBWE, LF
Raipur	Spraying of Fipronil 5% w/w SC.	08-09-22, 23-09-22, 10-10-22, 25- 10-22, 10-11-22, 25-11-22 Repeated 5 times at 15 day interval	30 , 45, 60, 75,90, 105 DAT	SBDH, SBWE, LF, RHDL, NE- spiders, dragonflies & damsel flies
Titabar	Chlorantraniliprole 18.5 SC	26-9-2022 & 15-10-2022	45 DAT, 63 DAT	SBDH, SBWE, SS, LF, CWDL, NE
Warangal	Carbofuran 3G	23-09-2022	20 DAT	SBDH, SS
Warangal	Chlorantraniliprole 18.5 SC	09-11-2022	67 DAT	SBWE

NM- not mentioned

The reaction of test entries across locations to gall midge (**Table 2.4.2**), stem borer dead heart damage (**Table 2.4.3**), stem borer white ear damage (**Table 2.4.4**), leaffolder (**2.4.5**) and the grain yield (**2.4.6**) are tabulated pest wise and discussed location wise.

Ambikapur: Observations on gall midge (% SS) and stem borer damage (%DH & WE) were recorded in the trial. SS (%) was significantly low in Cul M9, Suraksha, W1263 and Akshaydhan PYL. No significant difference in stem borer damage was observed between protected and unprotected treatments but damage was significantly low in Cul M9, W 1263, CR 3006-8-2 and CR Dhan 317.

Cuttack: Observations on leaffolder damage (5.73 – 8.26 % DL) and grasshopper count (6.5/10 h) was recorded.

Chinsurah: Incidence of stem borer was recorded in this trial. Dead heart damage was significantly lower in protected treatments at 51DAT and 57 DAT. Among the varieties tested RP 2068-18-3-5, RP5587-273-1-B-B-B and Cul M9 recorded significantly lower damage as compared to other entries. Suraksha, RP 2068-18-3-5, RP5587-273-1-B-B-B had significantly low white ear damage.

Gangavathi: Incidence of gall midge, stem borer and planthoppers along with counts on spiders, mirids bugs, damsel and dragonflies and hymenopteran parasitoids were recorded in this trial. Granular application had significantly reduced the gall midge damage in the protected treatments (5.73%SS) as compared to unprotected treatments (11.06%SS). White ear damage was significantly higher in unprotected treatments (8.75%) as compared to the protected (3.12%WE) treatments. CR 3006-8-2, RP5587-273-1-B-B-B and TN1 had lower dead heart damage (<10.6%). Cul 9, RP 2068-18-3-5, W1263 had significantly lower white ear damage followed by other entries. No significant difference was observed in planthopper (226 BPH/10h and 128 WBPH /10 hills) incidence, leaffolder incidence (mean 2.26% DL and mirid bug counts (39.28/ 10 hills) dragon and damsel flies (3.01/10 hills) and spiders (4.52 /10 hills). Cul 9 had higher grain yield followed by RP 2068-18-3-5 and RP5587-273-1-B-B-B.

IIRR: Stem borer white ear damage was recorded from the trial under infested conditions, W1263, RP 2068-18-3-5, KMR3 had significantly low damage as compared to other test entries. No significant difference in damage was observed between protected and unprotected treatments.

Ludhiana: Incidence of stem borer, leaffolder and counts of natural enemies viz., spiders, dragon and damsel flies were recorded. Precount and post count of pest damages after an insecticide spray were recorded. SBDH and SBWE was significantly low in the insecticide treated plots (2.7 %DH, 5.01 %WE) as compared to unprotected control (5.4%DH, 6.4%). Cul M9, CRDhan 3006-8-2, W1263 and CR Dhan 317 recorded significantly lower SBDH. CR Dhan 3006-8-2, CR Dhan 317, KMR3, W1263 and Suraksha had lower white ear damage as compared to other test entries. CulM9 and leaffolder damage was significantly low in Cul M9 and W1263 in insecticide treated plots. However, Cul M9 and RP 2068-18-3-5 did not flower at this location. Treatments had no effect on the spider population. The grain yield in unprotected plots was significantly higher than that of the unprotected plots (P=0). Among the test entries CR Dhan 317 and CR 3006-8-2 had higher grain yield as compared to other test entries.

Raipur: In the protected treatments spraying of Fipronil 0.3%SC was taken up at 15 days interval for six times starting from 30 DAT. Observations were recorded on the incidence of gall midge, stem borer, planthoppers, rice hispa and leaf folder. Despite 6 sprays of insecticide application SBDH and SBWE did not differ

significantly between the insecticide treated plots (19.9 % DH, 29.8 % WE and unprotected plots (31.2% DH, 34.5%WE). RP2068, KMR3 CR Dhan 317 and Akshaydhan PYL had significantly lower WE damage as compared to other test entries. No significant difference in hispa and leaf folder damage was observed though insecticide treatment reduced leaffolder damage (3.0 % DL) significantly as compared to the control (6.91 % DL). Counts on natural enemies like ground beetles (1.0/10 hills in treated and 1.2/10 h in unprotected), coccinellids (treated -1.63/10 h; unprotected1.87/10h), rove beetles (treated-0.53/10 h; unprotected-0.3/10h), spiders (1.67/10 h) were observed. CR Dhan 317 and RP5587-273-1-B-B-B recorded the highest grain yield among the test entries. Cul M9 did not flower at this location.

Warangal: Observations were recorded on the incidence of gall midge before and after the insecticide treatments. Granular application alone reduced the SS damage significantly. W1263 (*Gm1*), CUL M9, Suraksha (*Gm11*), Akshyadhan PYL, RP2068- 18- 3-5 (*gm3*) recorded significantly lower damage in all the four observations on silver shoot damage as compared to other entries. Application of Chlorantraniliprole had significantly lowered the dead heart damage and white ear damage significantly. Suraksha, KMR3, CR3006-8-2, RP5587-273-1-B-B-B, Akshyadhan PYL recorded significantly lower dead heart damage compared to other test entries.CR Dhan 317, Cul M9 and TN1 had lower white ear damage. Cul M9, Suraksha and W1263 had significantly higher grain yield.

Titabar: Incidence of gall midge, stem borer, leaffolder and case worm were reported from this location. Though two sprays of Chlorantraniliprole were given at this location, damage by case worm, dead heart and white ear damage by stem borer in the treatments were non significant. Silver shoot damage was significantly low in the protected (6.15%SS) plots as compared to control (10.3%SS). Silver shoot damage in test entries (7.15-9.56%SS) was not significant. The dead heart damage (3.28% DH-7.57 % DH), white ear damage (3.11-10.5%WE) and leaf folder damage (1.67-3.73 % DL) were not significant between the test entries. The mirid bug population was significantly low (0.48/10 hills) as compared to untreated control (1.8/10 hills).

Reaction across locations: In this trial, 9 resistant cultures were evaluated at 9 locations. Silver shoot damage by **gall midge** was reported across 4 locations. Observations revealed that across locations the **damage was significantly lower** (1.7-3.03%SS) in **W1263** (*Gm1*), CUL M9, Suraksha (*Gm11*), Akshyadhan PYL, RP2068- 18- 3-5 (*gm3*) as compared to other varieties (F val, 8.901 at 9 df P = 0) where the damage ranged from 7.7-11.6% SS. These entries were possessing different gall midge resistance genes and can be utilized as donors in the breeding programs for development of gall midge resistant varieties for the endemic locations.

Dead heart damage was reported from 7 locations and it was significantly lower in insecticide treatments at 4 locations as compared to unprotected control. **CUL M9, RP2068, RP5587-273-1-B-B-B** and **Suraksha** recorded lower damage across locations though statistically not significant (F val 0.426, P val 0.916).

White ear damage was reported from 8 locations. White ear damage was significantly lower in protected treatments at 3 locations. This variation could be due to the type of insecticide used and the timing of insecticide spray. Though Cul9 had the least damage followed by KMR3, RP 2068-18-3-5, CR Dhan317, Akshaydhan PYL, W 1263 and RP5587-273-1-B-B-B the reaction was statistically not significant (F val 0.098, Pr 1.0 at 9 df).

Analysis of grain yield from 5 locations identified CR Dhan 317, KMR 3, RP2068-18-3-5, with higher yield (4 -4.5/ha) though statistically not significant (F val 1.563, P val 0.144).

Table 2.4.2 Reaction of resistant cultures to gall midge damage, OPCT, kharif 2022.

Test entry	ABK	ABK	GNV	TTB	WGL	WGL	WGL	WGL
					%SS PRECOUNT	%SS 15 days		%SS 15
	%SS 41 DAT	%SS 59 DAT	%SS 30 DAT	%SS 45 DA	I	after Trt.1	precount II	DAYS after T
CUL M9	0.30(0.86) e	0.42(0.90) f	5.58(2.38) i	8.56(2.96)	3.15(1.87) c	3.33(1.88) c	2.48(1.70)c	1.57(1.37) c
CR 3006-8-2	16.30(4.05) a	14.76(3.81) b	9.14(3.08) d	7.46(2.79)	9.71(3.19) ab	10.10(3.19) a	12.67(3.58) a	3.38(1.94)b
CR Dhan 317	17.57(4.21) a	19.64(4.47) a	8.82(3.03) d	8.34(2.95)	10.72(3.32) ab	11.33(3.42) a	10.61(3.31) a	6.88(2.68) a
Akshayadhan PYL	0.59(0.97) b	1.19(1.26) e	9.69(3.17) c	7.57(2.81)	2.20(1.63) cd	2.87(1.68) c	4.45(2.11) b	1.54(1.41) co
RP5587-273-1-B-B-B	8.02(2.85) b	11.96(3.48) a	8.25(2.93) e	9.28(3.08)	8.91(3.04) ab	8.44(2.97) b	10.61(3.30) a	1.54(1.40) co
KMR 3	18.18(4.27) a	17.52(4.22) a	7.70(2.83)f	7.15(2.74)	7.32(2.78) b	10.63(3.32) a	12.04(3.53) a	2.00(1.53) bo
Suraksha	1.01(1.17) d	2.32(1.62) d	11.42(3.43) a	7.72(2.86)	2.79(1.75) cd	2.82(1.75) c	1.16(1.25) d	0.74(1.01) d
W1263	0.00(0.71) e	1.14(1.18) d	6.76(2.64) g	8.15(2.89)	0.77(1.06) e	3.18(1.89) c	2.70(1.68)cd	0.64(1.01) d
RP2068	1.98(1.41)c	4.84(2.19)c	6.22(2.53) h	8.24(2.92)	1.69(1.42) cd	4.45(2.16) a	2.71(1.74)c	0.98(1.16) co
TN1	18.78(4.34) a	17.78(4.23) a	10.38(3.27) b	9.56(3.14)	11.85(3.49) a	12.46(3.58) a	8.97(3.04) a	7.14(2.73) a
CD(0.05)	0.7	0.55	0.06	ns	0.54	0.6	0.68	0.51
CV(%)	24.23	17.1	1.69	11.18	19.77	19.99	23.24	26.83
Main Treatments								
Protected	7.75(2.42)	6.98(2.39)	5.73(2.47)	6.15(2.57)	5.78(2.33)	6.27(2.42)	6.36(2.43)	2.18(1.49)
Unprotected	8.79(2.55)	11.34(3.08)	11.06(3.39)	10.26(3.26)	6.04(2.38)	7.66(2.75)	7.32(2.62)	3.10(1.76)
CD(0.05)	ns	0.59	0.14	0.17	ns	0.32	ns	ns
CV(%)	25.16	19.55	4.38	5.12	16.39	11.1	7.5	15.57
Interaction								
M and T	ns	ns	0.08	ns	ns	ns	ns	ns
T and M	ns	ns	0.13	ns	ns	ns	ns	ns
Experimental Mean	2.48	2.74	2.93	2.91	2.35	2.58	2.52	1.62

M- Main treatments; T -sub treatments (Varieties) Fgures in parentheses are square root transformed values. Means in a column followed by same letter are not significantly different from one other at $P \le 0.05$..

Table 2.4.3 Reaction of resistant cultures to dead heart damage by stem borer at vegetative phase, OPCT, kharif 2022.

Test entry	ABK	CHN	CHN	GNV	LDN	LDN	RPR	TTB	WGL	WGL	WGL	WGL
	%DH40 DT	%DH 51 DAT	%DH 57 DAT	%DH 45 DAT		DH after spray	%DH	%DH	%DH PRECOUNT I	%DH 15 DAYS	%DH PRECOUNT II	%DH 15 DAYS
						. ,				AFTER		AFTER II
										TREATMENT1		TREATMENT
CUL M9	3.86(2.06)bc	3.49(1.94)a	0.71(1.08)d	17.29(4.18)a	2.66(1.78)e	2.88(1.80)g	20.98(4.52)	3.28(1.87)	1.17(1.19)	4.19(2.00)	2.12(1.58)	4.11(2.04)bc
CR 3006-8-2	2.05(1.53)c	2.26(1.65)ab	14.72(3.78)a	8.64(3.01)f	3.00(1.87)de	3.16(1.87)ef	26.03(5.09)	6.40(2.61)	2.86(1.81)	3.25(1.84)	4.30(2.02)	3.62(1.94)d
CR Dhan 317	5.23(2.37)ab	2.32(1.58)a	12.69(3.53)a	15.73(3.89)b	2.92(1.85)e	3.10(1.86)f	27.05(5.18)	3.85(2.08)	2.62(1.69)	5.31(2.25)	4.17(2.05)	4.47(2.10)b
Akshayadhan PYL	5.14(2.28)b	3.16(1.74)a	11.48(3.39)a	13.37(3.68)c	5.68(2.48)a	5.93(2.51)a	21.90(4.67)	5.96(2.41)	2.55(1.50)	4.09(1.96)	4.02(2.04)	3.07(1.85)d
RP5587-273-1-B-B-B	4.82(2.22)b	0.86(1.12)b	4.44(2.15)c	10.56(3.06)f	5.36(2.42)ab	5.41(2.41)b	31.91(5.55)	7.57(2.55)	1.30(1.30)	5.19(2.26)	4.58(2.23)	3.52(1.83)d
KMR 3	3.65(2.01)bc	3.29(1.93)bc	11.02(3.30)b	16.49(4.07)a	5.24(2.40)abc	5.00(2.32)c	20.04(4.45)	6.03(2.39)	1.55(1.34)	5.20(2.22)	3.15(1.79)	3.99(2.04)bcd
Suraksha	4.21(2.07)b	1.17(1.26)b	5.04(2.22)c	12.39(3.54)d	5.37(2.42)ab	4.73(2.26)d	29.77(5.38)	6.19(2.55)	0.47(0.95)	2.42(1.58)	2.05(1.45)	1.52(1.30)f
W1263	4.06(2.10)b	3.60(1.97)a	11.43(3.34)a	10.17(3.24)e	3.24(1.93)cd	3.36(1.92)e	27.86(5.29)	4.63(2.25)	0.89(1.14)	2.79(1.74)	1.99(1.54)	2.36(1.57)e
RP2068	3.78(2.04)bc	0.69(1.01)c	5.28(2.32)c	13.06(3.61)cd	3.32(1.95)bc	3.27(1.90)ef	22.35(4.73)	6.14(2.55)	2.21(1.52)	5.28(2.33)	2.56(1.67)	4.36(2.10)bc
TN1	7.75(2.82)a	4.29(2.03)a	11.73(3.34)a	8.33(2.56)f	5.92(2.53)a	5.29(2.37)b	27.95(5.22)	5.34(2.39)	0.47(0.95)	5.95(2.41)	3.51(1.94)	4.92(2.09)a
CD(0.05)	0.61	0.51	0.45	0.92	0.07	0.04	ns	ns	ns	ns	ns	0.45
CV(%)	24.21	26.88	13.63	22.74	2.71	1.73	15.08	32.93	45.72	28.04	36.62	20.4
Main treatments												
Protected	4.23(2.09)	1.45(1.32)c	4.79(2.21)b	10.71(3.18)	4.20(2.15)	2.68(1.76)b	19.94(4.44)	5.66(2.33)	1.51(1.32)	2.72(1.67)	2.44(1.63)b	2.99(1.73)
Unprotected	4.68(2.21)	3.58(1.92)a	12.92(3.48)a	14.49(3.79)	4.34(2.18)	5.74(2.49)a	31.23(5.58)	5.42(2.40)	1.71(1.36)	6.01(2.45)	4.06(2.03)a	4.19(2.04)
CD(0.05)	NS	0.07	0.45	NS	ns	0.14	NS	NS	NS	NS	0.18	NS
CV(%)	33.11	3.69	14.32	17.29	2.41	6.13	25.78	10.81	12.04	54.1	8.87	23.01
Interaction												
M and T	ns	ns	0.64	1.31	ns	0.06	ns	ns		ns	ns	ns
T and M	ns	ns	0.7	1.35	ns	0.12	ns	ns		ns	ns	ns
Experimental Mean	2.15	1.62	2.85	3.48	2.16	2.12	5.01	2.37		2.06	1.83	1.89

Main treatments; T -sub treatments (Varieties) Fgures in parentheses are arc sine transformed values. Means in a column followed by same letter are not significantly different from one other at $P \le 0.05...$

Table 2.4.4 Reaction of resistant cultures to white ear damage by stem borer at reproductive phase, OPCT, kharif 2022

Test entry	ABK	CHN	GNV	IIRR*	LDN	RPR	TTB	WGL
	%WE 59 DAT	%WE 89 DAT	%WE 100 DAT	%WE	%WE	%WE	%WE	%WE
CUL M9	4.50(2.23)c	7.54(2.78) bc	3.22(1.77) e	27.93(31.81)ab	NF	NF	6.38(2.34)	1.76(1.45) b
CR 3006-8-2	4.40(2.20)c	12.82(3.55) a	6.91(2.66) abc	30.50(33.49) a	5.03(2.35)e	52.82(46.69)a	9.21(3.07)	4.52(2.21)a
CR Dhan 317	4.92(2.30)c	8.34(2.88) bc	6.23(2.55) bc	27.39(31.49) ab	4.81(2.30)e	25.98(30.56) c	3.11(1.75)	1.61(1.37)b
Akshayadhan PYL	7.31(2.76)ab	9.86(3.16) ab	7.33(2.72) ab	26.99(31.14) ab	9.04(3.08) b	26.47(30.73)c	10.16(3.19)	2.91(1.78) a
RP5587-273-1-B-B-B	5.61(2.42) b	5.90(2.45) cd	5.14(2.30) cd	29.00(32.55)a	8.25(2.95) c	36.46(37.04)b	4.04(1.75)	3.53(1.99) a
KMR 3	5.26(2.37)b	9.14(3.07) b	5.29(2.34) bcd	24.17(29.37) b	6.91(2.72) d	24.93(29.84)c	8.11(2.87)	2.79(1.80) a
Suraksha	8.36(2.92) a	5.17(2.33) d	9.25(3.00) a	26.12(30.67) ab	6.93(2.72) d	40.60(39.51)b	6.81(2.52)	2.79(1.79) a
W1263	4.56(2.18)c	7.99(2.86) bc	3.92(1.99)e	21.46(27.51) c	6.66(2.67)d	41.35(39.95)b	10.50(3.22)	3.72(2.04) a
RP2068	5.52(2.41) b	5.53(2.43) cd	3.04(1.74) e	21.22(27.34) c	NF	20.20(26.14)c	9.06(2.90)	4.88(2.26) a
TN1	5.66(2.44)b	8.49(2.94) b	8.99(3.03) a	27.47(31.57) ab	9.44(3.14)a	52.86(46.65) a	6.43(2.31)	2.27(1.60) b
CD(0.05)	0.4	0.45	0.34	3.45	0.05	5.68	ns	0.45
CV(%)	14.21	13.49	12.24	9.64	1.78	14.87	38.75	20.9
Main treatments								
Protected	4.43(2.18)	5.24(2.36)	3.12(1.82)	26.10(30.64)	5.01(2.21)	29.82(31.30)	7.36(2.62)	2.52(1.68)
Unprotected	6.79(2.67)	10.91(3.33)	8.75(3.01)	26.35(30.74)	6.40(2.46)	34.52(34.12)	7.40(2.57)	3.63(1.98)
CD(0.05)	ns	0.48	0.13	ns	0.04	ns	ns	0.27
CV(%)	20.63	15.15	4.97	11.18	1.6	17.87	15.38	13.26
Interaction								
M and T	ns	ns	ns	ns	0.07	ns	ns	ns
T and M	ns	ns	ns	ns	0.07	ns	ns	ns
Experimental Mean	2.42	2.84	2.41	30.69	2.33	32.71	2.59	1.83

NF- no flowering; Main treatmens; T-sub treatments (Varieties) Fgures in parentheses are arc sine transformed values . Means in a column followed by same letter are not significantly different from one other at $P \le 0.05$..

Table 2.4.5 Reaction of resistant cultures to leaffolder damage, OPCT, kharif 2022

Test entry	CHN	CTC	CTC	GNV	LDN	LDN	RPR	TTB
		%LFDL	%LFDL		%LFDL	%LFDL		
	%LFDL	30DAT	50DAT	%LFDL	PRECOUNT	AFTER SPRAY	%LFDL	%LFDL
CUL M9	2.60(1.74)	7.74(2.84)	6.70(2.67)	2.65(1.55)	4.69(2.28)c	4.73(2.26)d	4.76(2.22)	3.43(1.90)
CR 3006-8-2	1.79(1.49)	6.73(2.67)	6.67(2.66)	4.82(2.18)	5.45(2.44)b	5.19(2.37)c	5.31(2.37)	2.51(1.67)
CR Dhan 317	2.27(1.62)	5.79(2.51)	5.74(2.50)	7.29(2.73)	5.92(2.53)b	5.48(2.42)bc	4.18(2.14)	2.94(1.77)
Akshayadhan PYL	1.74(1.46)	6.46(2.62)	6.36(2.60)	7.21(2.74)	5.73(2.49)b	5.76(2.48)bc	5.62(2.36)	2.85(1.75)
RP5587-273-1-B-B-B	1.69(1.43)	8.26(2.93)	6.44(2.62)	2.87(1.60)	5.97(2.54)b	6.02(2.53)b	4.88(2.27)	3.73(1.96)
KMR 3	2.63(1.74)	5.73(2.50)	6.66(2.65)	5.94(2.38)	5.72(2.49)b	5.37(2.40)b	5.31(2.35)	3.64(2.01)
Suraksha	1.94(1.48)	5.75(2.50)	6.65(2.66)	7.87(2.65)	5.56(2.46)b	5.90(2.52)b	4.30(2.13)	2.16(1.58)
W1263	2.66(1.66)	7.32(2.76)	6.19(2.58)	4.37(2.11)	4.20(2.17)c	4.46(2.21)d	6.07(2.44)	2.48(1.65)
RP2068	2.26(1.61)	7.34(2.77)	6.35(2.60)	7.26(2.74)	5.89(2.53)b	5.39(2.41)bc	4.20(2.09)	1.67(1.39)
TN1	1.61(1.43)	6.78(2.67)	5.79(2.51)	4.90(1.92)	6.86(2.71)a	7.29(2.76)a	4.95(2.32)	2.96(1.78)
CD(0.05)	ns	ns	ns	ns	0.13	0.1	ns	ns
CV(%)	23.23	12.96	10.19	38.15	4.53	3.69	15.33	32.47
Main treatments								
Protected	1.57(1.39)	6.27(2.59)	6.37(2.61)	5.42(2.26)	5.89(2.52)	4.10(2.14)	3.00(1.84)	2.97(1.78)
Unprotected	2.67(1.74)	7.31(2.77)	6.34(2.60)	5.62(2.26)	5.30(2.40)	7.01(2.74)	6.91(2.70)	2.71(1.72)
CD(0.05)	ns	ns	ns	ns	ns	0.13	0.76	ns
CV(%)	43.96	18.89	19.69	90.83	5.23	4.64	30.26	19.49
Interaction								
M and T	ns	ns	ns	ns	ns	ns	ns	ns
T and M	ns	ns	ns	ns	ns	ns	ns	ns
Experimental Mean	1.57	2.68	2.6	2.26	2.46	2.44	2.27	1.75

M- Main treatments; T -sub treatments (Varieties) Fgures in parentheses are square root transformed values . Means in a column followed by same letter are not significantly different from one other at $P \le 0.05$.

Table 2.4.6 Grain yield of resistant cultures tested in OPCT kharif 2022

			Grain Yie	ld (Kg/ha)		
Test entry	AMB	CHN	GNV	RPR	TTB	WGL
CUL M9	2306.67 bc	3966.7	6727.78a	276.39g	12.9	3051.15 e
CR 3006-8-2	2741.67a	3900.0	2864d	2754.17de	12.3	6238.98 b
CR Dhan 317	2001.67de	4888.9	3561.09c	5747.22a	12.1	5993.17 bc
Gmss-20-74	1750.83ef	3977.8	2909.56d	2936.11d	11.7	5759.48 bc
RP5587-273-1-B-B-B	2200.83cd	4555.6	3784.95c	2500e	11.7	7660.94 a
KMR 3	1925.83de	3477.8	3658.96c	5090.28b	10.7	7118.61 a
Suraksha	1178.33g	3244.4	2130.67d	1005.56f	13.1	3196.65 e
W1263	1625f	4066.7	3640c	1065.28 f	11.4	4205.25 d
RP2068	1901.67ef	3900.0	5447.72b	2958.33d	11.6	5522.49 c
TN1	2538.33ab	4144.4	2419.29d	3397.22c	12.4	7153.88a
CD(0.05)	291.61	632.81	859.35	327.75	ns	642.81
CV(%)	12.39	13.52	19.83	10.13	11.69	9.86
Main treatments						
Protected	2161a	4133.33	4147.83	2482.22	15.63a	5912.48a
Unprotected	1873.17b	3891.11	3280.98	3063.89	8.37b	5267.64b
CD(0.05)	193.11	ns	ns	125.52	2.32	358.74
CV(%)	8.62	12.19	32.22	4.07	17.41	5.78
Interaction						
M and T	ns	ns	ns	ns	2.31	ns
T and M	ns	ns	ns	ns	2.85	ns
Experimental Mean	2017.08	4012.22	3714.4	2773.06	12	5590.06

M- Main treatmens; T -sub treatments (Varieties) Means in a column followed by same letter are not significantly different from one other at P≤0.05..

2.5 Ecological Studies

1. Influence of Establishment Methods on Pest Incidence (IEMP)

With growing water scarcity worldwide, especially in Asia and India, the pressure to reduce water use in irrigated agriculture is mounting. The traditional method of rice production is a serious concern in India for water conservation. Rice farmers are already adopting several alternative establishment methods like direct seeding, aerobic rice, mechanical transplanting and System of Rice Intensification (SRI). Keeping this in mind, a collaborative trial with the Agronomy section aimed to assess the influence of crop establishment methods on insect pest incidence was formulated and continued.

During *Kharif* 2022, the trial was conducted at 12 locations: Aduthurai, Chatha, Jagdalpur, Malan, Moncompu, Nawagam, Pantnagar, Pattambi, Pusa, Rajendranagar, Titabar and Ghaghraghat. The results are summarised below.

1. Aduthurai

Three crop establishment methods, mechanical transplanting, direct seeding and normal transplanting, were evaluated with ADT 53 variety (**Table 2.5.1.1**). The incidence of white ears caused by stem borer at the flowering stage was significantly high in direct-seeded rice (14.3% WE) as compared to normal transplanting (8.1% WE) and mechanical transplanting (4.4% WE) methods. The incidence of gall midge (<3% SS), leaf folder (<2% LFDL), whorl maggot (<1% WMDL), hispa (2%) and BPH (<1/hill) was low in all the crop establishment methods.

Table 2.5.1.1 Influence of Crop Establishment Methods on Pest Incidence at Aduthurai, Kharif 2022

Treatments	% DH		% WE	% SS	% LFDL	% WMDL	% HDL	BPH / 5 hills
	45 DAT	60 DAT	Pre har	45 DAT	75 DAT	45 DAT	30 DAT	90 DAT
T1 = Mechanical transplanting	0.8 (1.1)b	0.6 (1.0)b	4.4 (2.2)b	0.4 (0.9)b	0.2 (0.8)a	0.8 (1.1)a	0.4 (0.9)a	0.2 (1.0)a
T2 = Direct seeding	2.9 (1.8)a	3.7 (2.0)a	14.3 (3.8)a	3.0 (1.9)a	1.7 (1.4)a	0.7 (1.0)a	1.3 (1.3)a	0.4 (1.0)a
T3 = Normal transplanting	1.5 (1.4)ab	1.0 (1.2)b	8.1 (2.8)b	0.2 (0.8)b	0.4 (0.9)a	0.4 (0.9)a	0.1 (0.8)a	0.8 (1.2)a
LSD (0.05)	0.49	0.44	0.90	0.66	0.64	0.32	0.64	0.47
CV (%)	18.53	17.41	16.99	31.14	34.85	17.11	35.54	24.21

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

2. Chatha

Normal transplanting, puddled direct seeding and line-sowing methods were evaluated with Basmati 370 variety (**Table 2.5.1.2**). Dead heart damage caused by stem borer at the vegetative stage varied from 0 to 15.1% across the treatments. However, the incidence was at par in all three main plot treatments, three sub-plot treatments and their interactions.

Table 2.5.1.2 Influence of Crop Establishment Methods on Pest Incidence at Chatha, Kharif 2022

	pp Establishment wethous on r	% DH			
Main	plots	90 DAT			
M1 = Normal transplanting		6.0(2.4)a			
M2 = Puddled direct seeding		2.7(1.6)a			
M3 = Line sowing		4.0(1.8)a			
LSD	(0.05)	1.8			
CV	/ (%)	15.29			
Sub-plots	Sub-plots				
S1 = Weedy check		4.2(2.0)a			
S2 = Manual weeding	S2 = Manual weeding				
S3 = Chemical weed control	4.5(1.9)a				
LSD	1.10				
CV	(%)	14.91			
	S1 = Weedy check	4.5(2.1)a			
M1 = Normal transplanting	S2 = Manual weeding	4.3(2.2)a			
	S3 = Chemical weed control	9.3(3.0)a			
	S1 = Weedy check	3.1(1.5)a			
M2 = Puddled direct seeding	S2 = Manual weeding	3.0(1.7)a			
	S3 = Chemical weed control	1.9(1.4)a			
	S1 = Weedy check	4.9(2.3)a			
M3 = Line sowing	S2 = Manual weeding	4.8(1.7)a			
	S3 = Chemical weed control	2.2(1.4)a			
LSD (0.0	LSD (0.05) M in S				
LSD (0.0	05) S in M	3.41			

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

3. Jagdalpur

At this location, three crop establishment methods, normal transplanting, puddled direct seeding and unpuddled direct seeding were evaluated as main plot treatments and weedy check, mechanical weeding and chemical weed control as sub-plot treatments with Durgeshwary variety (**Table 2.5.1.3**). The incidence of stem borer (0 -10.7% DH &0 - 13.5% WE), gall midge (0– 9.1% SS), leaf folder (3.0 – 7.9% LFDL), whorl maggot (1.7 – 8.0% WMDL), thrips (0-3.7% THDL) was low and at par in all the main plot and sub-plot treatments.

Table 2.5.1.3 Influence of Crop Establishment Methods on Pest Incidence at Jagdalpur, Kharif 2022

Main n	oto	% D	Н	% WE	% SS	% LFDL	% THDL	% WMDL
Main pl	OIS	45 DAT	75 DAT	Pre har	60 DAT	90 DAT	45 DAT	45 DAT
M1 = Normal transp	olanting	4.0(2.0)a	5.2(2.3)a	5.2(2.3)a	4.2(2.1)a	6.1(2.6)a	2.6(1.7)a	5.2(2.4)ab
M2 = Puddled direc	t seeding	3.6(1.9)a	6.6(2.6)a	7.5(2.8)a	2.7(1.6)a	6.4(2.6)a	1.0(1.2)b	3.7(2.0)b
M3 = Unpuddled di	rect seeding	4.5(2.0)a	6.0(2.5)a	8.4(2.9)a	2.6(1.6)a	4.8(2.3)a	0.8(1.2)b	6.3(2.6)a
LSD (0.	05)	1.49	0.98	0.69	0.59	0.17	0.30	0.46
CV (%	(6)	25.27	23.38	15.35	19.71	4.10	13.05	11.78
Sub-pl	ots							
S1 = Weedy check		3.5(1.8)a	3.8(2.1)a	7.9(2.9)a	2.1(1.5)a	6.7(2.7)a	1.5(1.4)a	5.2(2.4)ab
S2 = Mechanical w	eeding	3.8(1.9)a	6.4(2.6)a	7.2(2.7)a	3.9(1.9)a	4.3(2.2)a	1.7(1.4)a	4.6(2.2)a
S3 = Chemical wee	ed control	4.7(2.1)a	7.6(2.8)a	6.0(2.4)a	3.6(1.9)a	6.3(2.6)a	1.2(1.3)a	5.4(2.4)a
LSD (0.	05)	1.29	0.69	0.69	1.18	0.22	0.32	0.23
CV (%	(6)	25.38	21.86	26.50	25.58	7.09	18.86	7.95
M1 = Normal	S1	3.1(1.7)a	3.8(2.1)a	6.6(2.6)a	1.8(1.4)a	5.9(2.5)abc	2.5(1.7)ab	5.9(2.5)ab
transplanting	S2	4.5(2.0)a	5.7(2.4)a	5.7(2.4)a	5.2(2.3)a	5.1(2.4)bc	2.8(1.8)a	4.1(2.1)ab
	S3	4.4(2.2)a	6.1(2.5)a	3.3(1.8)a	5.8(2.4)a	7.2(2.8)ab	2.3(1.7)ab	5.5(2.4)ab
M2 = Puddled	S1	3.6(1.8)a	4.1(2.1)a	8.1(2.9)a	2.6(1.6)a	6.5(2.6)abc	1.1(1.2)ab	3.4(1.9)ab
direct seeding	S2	3.6(2.0)a	6.5(2.6)a	7.5(2.8)a	3.5(1.8)a	5.5(2.4)abc	1.4(1.4)ab	2.7(1.8)b
, and the second	S3	3.8(1.9)a	9.3(3.1)a	6.8(2.6)a	1.8(1.4)a	7.2(2.8)ab	0.6(1.0)b	4.9(2.3)ab
M3 = Unpuddled	S1	3.9(1.9)a	3.6(2.0)a	9.0(3.0)a	2.0(1.5)a	7.8(2.9)a	0.9(1.2)ab	6.3(2.6)ab
direct seeding	S2	3.5(1.8)a	7.0(2.7)a	8.5(3.0)a	3.0(1.7)a	2.3(1.7)d	0.8(1.2)ab	6.9(2.7)a
	S3	6.0(2.3)a	7.3(2.8)a	7.7(2.8)a	3.1(1.7)a	4.3(2.2)cd	0.8(1.2)ab	5.7(2.5)ab
LSD (0.05)	M in S	3.11	1.65	2.14	2.84	0.53	0.78	0.56
LSD (0.05)	S in M	3.33	1.96	2.01	2.47	0.50	0.77	0.82

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

4. Malan

Direct seeding, normal transplanting and semi-dry rice methods were assessed with HPR 1068 variety at this location. Though the dead heart damage varied from 0 to 15.4% at 60 DAT, 0 to 20% at 75 DAT, 7.1 to 25% at 90 DAT, the damage was at par in all crop establishment methods. Similarly, leaf folder damage was at par in all the main plot and sub-plot treatments (**Table 2.5.1.4**). Low incidence of BPH (<5/ hill), WBPH (<3/ hill) and GLH (<2/hill) was observed in all the methods of crop establishment.

Table 2.5.1.4 Influence of Crop Establishment Methods on Pest Incidence at Malan, Kharif 2022

Treatments		% DH			% LFDL				
rreatments	60 DAT	75 DAT	90 DAT	45 DAT	60 DAT	75 DAT	90 DAT		
T1 = Direct seeding	4.4(1.8)a	8.7(2.8)a	14.5(3.8)a	12.2(3.6)a	13.8(3.8)a	13.9(3.8)a	16.3(4.0)a		
T2 = Normal transplanting	9.8(3.0)a	16.1(4.1)a	17.7(4.2)a	16.6(4.1)a	18.9(4.4)a	16.8(4.1)a	21.1(4.6)a		
T3 = Semi dry rice	7.1(2.4)a	12.2(3.3)a	16.3(4.0)a	14.3(3.8)a	14.7(3.9)a	14.4(3.9)a	15.7(4.0)a		
LSD (0.05)	2.04	1.57	1.38	0.69	1.08	1.05	0.72		
CV (%)	27.71	25.78	19	10	14.94	14.86	9.46		

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

5. Moncompu

At this location, two methods of crop establishment, drum seeding, and normal transplanting were assessed with cono weeding and chemical weed control as subplot treatments in the Uma variety. Low incidence of dead hearts caused by stem borer (<3% DH), hispa (<1& HDL), leaf folder (<2% LFDL), and BPH (<5/hill) was observed in all the main plot and sub-plot treatments.

Table 2.5.1.5 Influence of Crop Establishment Methods on Pest Incidence at Moncompu, Kharif 2022

Main plata	•	% DH	%HDL	%LFDL	BPH (No./5 hills)
Main plots		45 DAT	30 DAT	30 DAT	60 DAT
Drum seeding	Drum seeding		0.5(1.0)a	1.1(1.2)a	6(2)a
Normal Transplant	ting	2.0(1.4)a	0.2(0.8)a	0.8(1.1)a	8(3)a
L	SD (0.05)	0.79	0.16	0.45	0.70
	CV(%)	15.79	14.54	32.11	21.71
Subplots					
Cono weeding		0.4(0.9)b	0.5(1.0)a	1.0(1.2)a	6(2)a
Chemical weed co	ntrol	2.5(1.6)a	0.2(0.8)a	0.8(1.1)a	8(3)a
L	-SD (0.05)	0.61	0.33	0.36	1.00
	CV(%)	18.02	36.02	31.27	28.12
Drum seeding	Cono weeding	0.8(1.1)ab	0.5(1.0)a	1.5(1.4)a	2(6)a
Druin Seeding	Chemical weed control	1.0(1.1)ab	0.5(0.9)a	1.0(1.2)a	27(2)a
Normal	Cono weeding	0.0(0.7)b	0.5(0.9)a	0.6(1.0)a	7(2)a
Transplanting Chemical weed control		4.0(2.0)a	0.0(0.7)a	0.5(1.0)a	9(3)a
LSD (0.05) M in S		1.19	0.65	0.71	1.99
LSD	(0.05) S in M	1.41	0.51	0.82	1.73

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

6. Nawagam

GAR 14 variety was grown in three establishment methods, mechanical transplanting, direct seeding, and aerobic rice. Dead heart damage caused by stem borer was low and at par in all three methods during 45 and 60 DAT. However, dead heart incidence was high in mechanical transplanting (11.3%DH) which was at par with aerobic rice (9.9 %DH). White ear incidence was at par in all three methods (**Table 2.5.1.6**). Leaf folder damage was low at 45 DAT while at 75 DAT, it was significantly high in mechanical transplanting (14 %LFDL) followed by aerobic rice which was at par with direct seeding. The incidence of WBPH was low (<1/hill) in all the crop establishment methods.

Table 2.5.1.6 Influence of Crop Establishment Methods on Pest Incidence at Nawagam, Kharif 2022

Treatments	_	% DH			% L	.FDL	WBPH / 5 hills		
rreatments	45 DAT	60 DAT	75 DAT	Pre har	45 DAT	75 DAT	60 DAT	75 DAT	
T1 = Mechanical transplanting	4.9(2.2)a	5.4(2.4)a	11.3(3.4)a	16.0(4.1)a	8.6(3.0)a	14.0(3.8)a	4.4(2.2)a	3.2(1.9)a	
T2 = Direct seeding	3.2(1.6)a	4.8(2.0)a	6.9(2.8)b	15.3(3.9)a	4.7(2.3)a	6.3(2.6)b	2.8(1.8)b	1.2(1.3)b	
T3 = Aerobic rice	3.4(1.6)a	3.8(1.9)a	9.9(3.2)ab	14.2(3.8)a	4.9(2.3)a	9.0(3.0)b	2.4(1.7)b	1.2(1.3)b	
LSD (0.05)	1.81	1.56	0.63	1.42	0.9	0.58	0.36	0.31	
CV(%)	15.56	21.57	11.15	20.16	19.92	10.17	10.58	11.61	

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

7. Pantnagar

Four establishment methods, wet direct seeded rice (WDSR), direct seeding, normal transplanting, and aerobic rice were assessed with PD 24 variety. The incidence of dead hearts, and white ears caused by stem borer, leaf folder, whorl maggot, hispa and BPH was very low in all the methods of rice cultivation (**Table 2.5.1.7**).

Table 2.5.1.7 Influence of Crop Establishment Methods on Pest Incidence at Pantnagar, Kharif 2022

Establishment methods	% DH	% WE	% LFDL	% WMDL	%HDL	BPH
Lotabilotiment methods	45 DAT	Pre har	75 DAT	45 DAT	45 DAT	75 DAT
Wet DSR	2.7(1.5)a	2.9(1.7)a	0.6(1.0)a	2.0(1.6)a	3.0(1.8)a	0.6(1.0)b
Direct seeding	2.2(1.4)a	4.7(2.0)a	1.2(1.3)a	2.5(1.5)a	5.3(2.2)a	0.8(1.0)ab
Normal transplanting	4.8(2.1)a	9.3(2.9)a	1.4(1.3)a	2.3(1.6)a	2.4(1.7)a	3.2(1.9)a
Aerobic rice	1.2(1.2)a	8.4(2.9)a	1.9(1.5)a	4.0(2.1)a	3.3(1.7)a	0.0(0.7)b
LSD (0.05)	1.99	2.12	0.76	1.3	1.64	0.84
CV(%)	19.23	17.67	12.01	11.43	15.03	19.22

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

8. Pattambi

The Aishwarya variety was grown in three methods of crop establishment, Line sowing with a drum seeder, direct seeding, and normal transplanting methods at this location (**Table 2.5.1.8**). The incidence of dead hearts caused by stem borer was significantly high in the normal transplanting method (17.9 %DH) s compared to direct seeding and line sowing. However white ear incidence was at par in all three crop establishment methods (11.7 – 19.2 %WE). At 15 DAT, gall midge incidence was significantly high in the normal transplanting method (37.5 %SS) and was at par with line sowing (24.8 %SS) while it was significantly high in line sowing (30.2 %SS) compared to other methods at 30 DAT. The incidence of whorl maggot, caseworm, and blue beetle was significantly low in direct-seeded rice compared to the other two crop establishment methods.

Table 2.5.1.8 Influence of Crop Establishment Methods on Pest Incidence at Pattambi, Kharif 2022

Treatments	% DH	% WE	% 9	SS	% W	MDL	% C	WDL	%BBDL
Treatments	15 DAT	Pre har	15 DAT	30 DAT	15 DAT	30 DAT	15 DAT	30 DAT	15 DAT
T1 = Line sowing	7.3	11.7	24.8	30.2	29.2	21.7	25.2	11.2	28.0
with drum seeder	(2.3)b	(3.5)a	(4.4)ab	(5.5)a	(5.3)a	(4.7)a	(5.0)a	(3.3)ab	(5.2)a
T2 = Direct	5.8	14.1	1.3	2.0	5.0	4.9	4.0	1.7	1.7
seeding	(2.4)b	(3.8)a	(1.1)b	(1.5)c	(2.3)b	(2.3)b	(2.1)b	(1.4)b	(1.4)b
T3 = Normal	17.9	19.2	37.2	16.7	20.2	25.3	32.1	26.3	30.0
transplanting	(3.9)a	(4.4)a	(5.3)a	(4.1)b	(4.4)a	(5.0)a	(5.4)a	(4.8)a	(5.4)a
LSD (0.05)	2.86	0.99	3.54	1.24	1.35	1.04	2.58	2.22	2.01
CV(%)	15.03	14.2	14.65	18.52	18.59	14.43	14.5	18.86	27.78

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

9. Pusa

Three crop establishment methods, puddled direct seeding, direct seeding and normal transplanting were evaluated with Rajendra saraswati variety. The incidence of dead hearts was significantly low in normal transplanting method (3.0 – 10.2% DH) compared to puddled direct seeding (16.2 – 22.6 %DH) and direct

seeding (12.5 - 22.5 %DH). However, the incidence of white ears caused by stem borer and leaf folder damage was at par in all three crop establishment methods (**Table 2.5.1.9**).

Table 2.5.1.9 Influence of Crop Establishment Methods on Pest Incidence at Pusa, Kharif 2022

Treatments	%	% DH			% WE	% L	FDL
rreatments	30 DAT	45 DAT	75 DAT	90 DAT	Pre har	45 DAT	75 DAT
T1 = Puddled direct seeding	19.7(4.0)a	16.2(4.0)a	18.3(4.3)a	22.6(4.8)a	14.7(3.9)a	8.2(2.9)a	14.6(3.8)a
T2 = Direct seeding	22.5(4.8)a	16.2(4.0)a	12.5(3.5)ab	17.3(4.1)ab	13.4(3.7)a	10.5(3.1)a	13.6(3.7)a
T3 = Normal transplanting	4.4(1.9)a	3.0(1.6)b	8.3(2.9)b	10.2(3.2)b	8.6(3.0)a	12.5(3.5)a	15.8(4.0)a
LSD (0.05)	3.47	1.81	0.77	1.42	1.04	0.95	1.10
CV(%)	15.21	16.02	9.95	16.18	13.65	13.76	13.34

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

10. Rajendranagar

RNR 15048 variety was grown in split plot design with three crop establishment methods as main plots and four weed management practices as sub-plots (**Table 2.5.1.10**). The three crop establishment methods include manual transplanting, puddled direct seeding by drum seeder, and unpuddled direct seeding by line sowing while the sub-plot treatments include weed-free, weedy check, mechanical weeding using weeder and chemical weed control. The incidence of dead hearts, white ears, leaf folder, whorl maggot and BPH was very low in all the treatments and their interactions.

Table 2.5.1.10 Influence of Crop Establishment Methods on Pest Incidence at Rajendranagar, Kharif 2022

Main plata	% DH	% WE	%LFDL	% WMDL	ВРН
Main plots	60 DAT	Pre har	60 DAT	60 DAT	60 DAT
M1 = Manual transplanting	0.8(1.1)ab	0.5(0.9(b	4.7(2.3)b	5.6(2.5)a	19(4)b
M2 = Puddled direct seeding by drum seeder	0.3(0.9)b	4.8(2.2)a	5.8(2.5)ab	0.8(1.1)b	32(6)a
M3 = Unpuddled dry direct seeding - line sowing	1.8(1.5)a	1.8(1.4)b	6.5(2.6)a	0.4(0.9)b	37(6)a
LSD (0.05)	0.52	0.46	0.34	0.27	0.98
CV(%)	12.38	28.31	12.63	16.89	16.77
Sub-plots					
S1 = Weed free	1.2(1.2)a	1.8(1.3)b	5.6(2.4)ab	2.6(1.6)ab	24(5)a
S2 = Weedy check	0.8(1.1)a	1.4(1.3)b	5.8(2.5)ab	2.1(1.5)ab	33(6)a
S3 = Mechanical weeding	1.1(1.2)a	4.0(1.9)a	6.3(2.6)a	1.9(1.4)b	30(5)a
S4 = Chemical weed control	0.8(1.1)a	2.1(1.5)b	4.9(2.3)b	2.6(1.6)ab	31(6)a
LSD (0.05)	0.44	0.47	0.30	0.21	0.77
CV(%)	15.01	28.03	10.97	12.50	12.85

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

11. Titabar

Four establishment methods, mechanical transplanting, direct seeding, normal transplanting, and aerobic rice were evaluated at this location with Ranjit Sub-1 variety (Table...). The incidence of stem borer, gall midge, leaf folder, whorl maggot and caseworm was low in all the four methods of crop establishment.

Table 2.5.1.11 Influence of Crop Establishment Methods on Pest Incidence at Titabar, Kharif 2022

Establishment methods	% DH	% WE	%SS	% LFDL	% WMDL	% CWDL
Establishment methods	60 DAT	Pre har	45 DAT	60 DAT	45 DAT	45 DAT
Mechanical transplanting	5.0(2.1)a	3.9(2.0)a	4.6(2.0)a	4.6(2.1)a	3.2(1.7)a	3.3(1.7)a
Direct seeding	6.3(2.4)a	2.9(1.7)a	3.6(1.6)a	2.7(1.6)a	3.7(1.8)a	3.7(1.8)a
Normal transplanting	4.4(2.1)a	4.0(2.0)a	2.9(1.5)a	3.2(1.7)a	3.1(1.7)a	3.1(1.7)a
Aerobic rice	4.3(1.9)a	4.5(2.2)a	2.7(1.5)a	3.4(1.9)a	2.6(1.6)a	2.6(1.6)a
LSD (0.05)	1.96	1.41	2.34	1.69	1.86	1.14
CV(%)	19.26	18.11	14.26	19.27	17.55	25.29

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

12. Ghaghraghat

NDR 2065 variety was grown in three establishment methods, *i.e.*, direct seeding, normal transplanting and aerobic rice. The incidence of dead hearts was significantly low in normal transplanting method as compared to direct seeding that was at par with aerobic rice **(Table 2.5.1.12)**. Similar trend was observed with respect to white ears and leaf folder damaged leaves at this location.

Table 2.5.1.12 Influence of Crop Establishment Methods on Pest Incidence at Ghaghraghat, Kharif 2022

Treatments		% DH		% WE	% LF	DL
rreatments	45 DAT	60 DAT	75 DAT	Pre har	60 DAT	75 DAT
T1 = Direct seeding	11.9(2.9)a	22.2(4.7)a	28.2(5.2)a	10.8(3.3)a	11.2(3.4)a	7.4(2.8)b
T2 = Normal transplanting	7.3(.6)a	7.9(2.9)b	6.4(2.6)b	5.6(2.5)b	3.6(2.0)b	4.2(2.2)b
T3 = Aerobic rice	8.2(2.5)a	15.0(3.9)ab	16.4(4.0)ab	9.3(3.1)a	8.0(2.8)a	3.8)a
LSD (0.05)	1.75	1.18	1.46	0.63	0.74	0.8
CV(%)	16.15	17.22	20.49	11.73	14.94	15.16

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

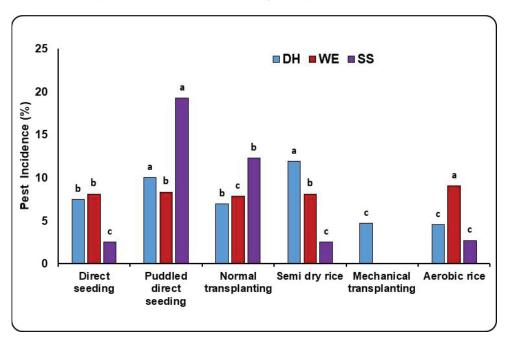


Fig 2.5.1.1 Incidence of stem borer and gall midge in different crop establishment methods across locations

Across locations, the incidence of stem borer, gall midge, leaf folder, hispa, whorl maggot, BPH, and WBPH was observed in all the crop establishment methods. In general, the incidence of insect pests was low during *Kharif* 2022. The incidence of

dead hearts was significantly high in semi-dry rice (11.9% DH) and was at par with puddled direct-seeded rice (**Fig. 2.5.1.1**). In all other methods, the incidence was low. The incidence of white ears caused by stem borer was relatively high in aerobic rice (9.03% WE) followed by puddled direct seeding (8.32% WE). Gall midge incidence was significantly high in puddled direct seeding (19.23% SS) followed by the normal transplanting method (12.24% SS). Gall midge incidence was very low (<3% SS) in the direct-seeded rice, semi-dry rice, and aerobic rice.

Among the foliage-feeding insects, leaf folder incidence was significantly high in semi-dry rice (14.78% LFDL) and was at par in all the other establishment methods (**Fig. 2.5.1.2**). In the puddled direct-seeding method, the incidence of whorl maggot (11.48% WMDL) and caseworm (15.98% CWDL) was significantly high compared to the other methods. The incidence of hispa and thrips was very low (<5%) in all the crop establishment methods.

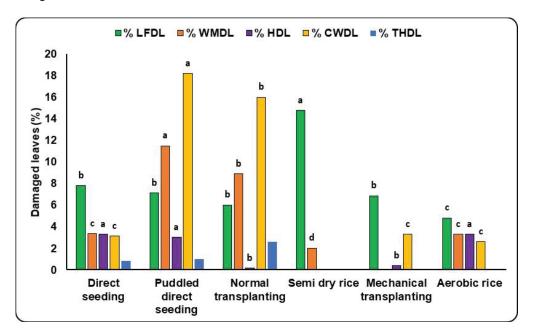


Fig. 2.5.1.2 Incidence of foliage-feeding insects in different crop establishment methods across locations

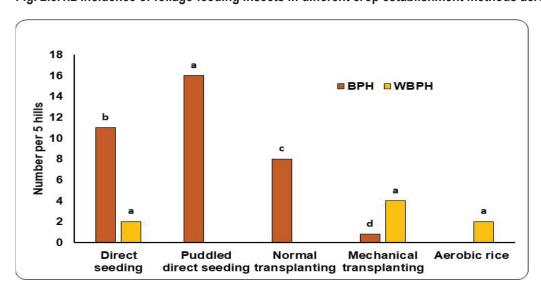


Fig. 2.5.1.3 Incidence of sucking pests in different crop establishment methods across locations

In general, the incidence of sucking pests like BPH and WBPH was low in all the crop establishment methods (**Fig. 2.5.1.3**). However, BPH incidence was relatively high in puddled direct-seeded rice (16/5 hills).

Influence of crop establishment methods (IEMP), a collaborative trial with Agronomy, was conducted at 12 locations during Kharif 2022. Across the locations, the incidence of dead hearts caused by stem borer and leaf folder was significantly high in semi-dry rice followed by puddled direct-seeded rice while white ears were high in aerobic rice. Gall midge incidence was significantly high in puddled direct-seeded rice followed by the normal transplanting method. The incidence of whorl maggot, caseworm, and BPH was also significantly high in puddled direct-seeded rice. Overall, the incidence of insect pests was significantly high in puddled direct-seeded rice followed by the normal transplanting method while the incidence was low in direct-seeded rice, semi-dry rice, mechanical transplanting, and aerobic rice.

transplanting method while the incidence was low in direct-seeded rice, semi-dry rice, mechanical transplanting, and aerobic rice.

2. Cropping Systems Influence on Pest Incidence (CSIP)

Cropping systems play a major role in the incidence of insect pests, their carry over and further spread. In India, rice-based cropping systems are the major systems in rotation with cereals, pulses, cotton, and vegetables. Due to the constraints in water and labour resources, farmers are adopting water-saving technologies like wet direct seeding, dry direct seeding and aerobic rice. Similarly, the incorporation of crop residues is known to help *Rabi* crops in rice-based cropping systems. As rice straw contains about 1-2% of Potassium, the incorporation of rice straw acts as a good source of nutrients for crops grown after rice. Keeping these in view, a trial on cropping system's influence on pest incidence (CSIP) was initiated last year in collaboration with the Agronomy section (CA/SM 1- Conservation Agriculture/System based management practices in rice and rice-based cropping systems to utilise resources and enhance the productivity and profitability) to evaluate the influence of different rice crop establishment methods under different residue management strategies with an aim to improve the overall productivity of the rice-based cropping system.

The field trial was laid out in a split-plot design with three replications. Main plot treatments comprised three different crop establishment methods (M1: Transplanting, M2: Wet seeding (line sowing under puddled conditions), and M3: Aerobic rice – Dry rice cultivation). The subplot treatments comprised three different Residue/straw management techniques (S1: No residue, S2: Incorporation of 15 cm height of rice straw from the ground, S3: Incorporation of 30 cm height of rice straw from the ground) to be superimposed for *Rabi* crops. During *Kharif* 2022, the trial was conducted at three locations: Karjat, Titabar and Ghaghraghat. The results are summarized below.

At Karjat, Karjat -3 variety was grown in this trial. The incidence of stem borer and leaf folder was low in all the treatments and were at par with each other **(Table 2.5.2.1).**

At Titabar, Ranjit Sub-1 was grown in this trial. The incidence of stem borer, leaf folder, whorl maggot, and caseworm was observed low and at par with each other in all the treatments (**Table 2.5.2.2**). The incidence of coccinellids, spiders and mirids was observed in all the main plots and sub-plot treatments.

At Ghaghraghat, the incidence of stem borer and leaf folder was recorded in NDR 2065 variety in all the treatments. The incidence of dead hearts caused by stem borer was at par in all the main plots and subplot treatments however, white ear heads were significantly high in aerobic rice (15.9%WE) and were at par with wet seeding (14.8% WE). Leaf folder damage was significantly high in the transplanting method (11.0% LFDL) compared to other main plot treatments (**Table 2.5.2.3**).

Table 2.5.2.1 Influence of cropping systems on pest incidence at Karjat, Kharif 2022

Tractments		% DH	% WE	% LFDL
Treatments		60 DAT	Pre har	30 DAT
Main plots				
M1= Transplanting		6.7(2.6)a	5.9(2.3)a	5.4(2.4)a
M2 = Wet seeding		4.9(2.3)a	5.1(2.3)a	5.5(2.4)a
M3 = Aerobic rice		7.0(2.7)a	4.2(2.1)a	5.5(2.4)a
LSD (0.05)		0.53	1.35	0.57
CV (%)		16.00	15.57	17.86
Sub plots				
S1 = No residue		6.7(2.6)a	4.9(2.2)a	4.9(2.3)a
S2 = 15 cm ht. of rice straw		6.1(2.5)a	4.9(2.2)a	6.1(2.6)a
S3 = 30 cm ht of rice straw		5.8(2.4)a	5.3(2.3)a	5.4(2.4)a
LSD (0.05)		0.29	0.53	0.41
CV (%)		10.89	22.70	16.32
M1= Transplanting	S1	7.3(2.7)a	5.1(2.1)a	5.1(2.4)a
	S2	7.0(2.7)a	5.1(2.1)a	6.1(2.6)a
	S3	6.0(2.4)a	7.4(2.8)a	5.0(2.3)a
M2 = Wet seeding	S1	5.5(2.4)a	4.7(2.3)a	5.3(2.4)a
	S2	4.6(2.3)a	4.7(2.3)a	6.0(2.5)a
	S3	4.6(2.3)a	5.9(2.5)a	5.4(2.4)a
M3 = Aerobic rice	S1	7.4(2.8)a	5.0(2.3)a	4.3(2.2)a
	S2	6.8(2.7)a	5.0(2.3)a	6.3(2.6)a
	S3	6.9(2.7)a	2.7(1.7)a	5.8(2.5)a
LSD (0.05)	M in S	0.49	0.92	0.70
·	S in M	0.66	1.54	0.80

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

Table 2.5.2.2 Influence of cro	pping systems	on pest in	cidence at	Titabar, <i>Kl</i>	narif 2022
Treatments	% DH	% WE	% LFDL	%WMDL	%CWDL
Main plots	45 DAT	Pre har	30 DAT	30 DAT	45 DAT
M1= Transplanting	5.2(2.2)a	3.3(1.9)a	3.7(1.9)a	3.6(1.8)a	2.8(1.7)a
M2 = Wet seeding	3.6(1.8)a	2.4(1.6)a	3.2(1.7)a	2.6(1.6)a	3.0(1.8)a
M3 = Aerobic rice	4.7(2.1)a	3.3(1.8)a	4.0(2.0)a	3.4(1.8)a	3.3(1.8)a
LSD (0.05)	0.96	0.75	0.57	1.02	0.70
CV (%)	14.59	21.04	19.63	26.59	28.09
Sub plots					
S1 = No residue	5.0(2.2)a	3.5(1.9)a	4.2(2.0)a	3.5(1.8)a	3.2(1.8)a
S2 = 15 cm ht. of rice straw	3.6(1.8)a	3.0(1.8)a	3.5(1.8)a	2.6(1.6)a	2.6(1.6)a
S3 = 30 cm ht of rice straw	4.9(2.2)a	2.6(1.6)a	3.3(1.7)a	3.5(1.8)a	3.3(1.9)a

ICAR-IIRR Annual Progress Report 2022, Vol. 2 – Entomology

LSD (0.05)		0.80	0.57	0.87	0.74	0.49
CV (%)		12.47	25.52	22.06	26.72	20.82
M1= Transplanting	S1	4.7(2.1)a	3.0(1.7)a	3.4(1.8)a	3.4(1.8)a	2.4(1.6)a
	S2	4.0(1.9)a	3.9(2.1)a	2.8(1.6)a	2.8(1.6)a	2.2(1.5)a
	S3	6.9(2.7)a	3.2(1.8)a	5.0(2.2)a	4.6(2.1)a	3.6(1.9)a
M2 = Wet seeding	S1	3.3(1.8)a	2.2(1.5)a	4.3(2.0)a	2.6(1.6)a	3.4(1.9)a
	S2	3.2(1.7)a	3.0(1.7)a	3.4(1.8)a	2.2(1.4)a	2.4(1.6)a
	S3	3.6(1.8)a	2.0(1.5)a	2.0(1.3)a	3.0(1.7)a	3.0(1.8)a
M3 = Aerobic rice	S1	6.9(2.7)a	5.4(2.4)a	5.0(2.2)a	4.6(2.1)a	3.6(1.9)a
	S2	3.6(1.8)a	2.2(1.6)a	4.2(2.0)a	2.8(1.6)a	3.0(1.7)a
	S3	3.6(1.8)a	2.5(1.6)a	3.0(1.7)a	2.8(1.6)a	3.3(1.9)a
LSD (0.05)	M in S	1.88	1.35	2.06	1.74	1.16
	S in M	2.05	1.53	1.87	2.03	1.37

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

Table 2.5.2.3 Influence of cropping systems on pest incidence at Ghaghraghat, Kharif 2022

Trootmonto		-	% DH		% WE	% L	FDL
Treatments		45 DAT	60 DAT	75 DAT	Pre har	45 DAT	75 DAT
Main plots							
M1= Transplanting		12.5(3.6)a	14.0(3.7)a	11.4(3.4)a	11.3(3.4)b	9.6(3.2)a	11.0(3.4)a
M2 = Wet seeding		11.5(2.9)a	11.5(3.4)a	11.2(3.4)a	14.8(3.9)ab	5.1(2.3)a	3.1(1.9)b
M3 = Aerobic rice		20.2(4.5)a	17.0(4.1)a	15.8(4.0)a	15.9(4.0)a	6.9(2.5)a	3.5(2.0)b
LSD (0.05)		2.05	1.25	0.98	0.60	1.46	0.38
CV (%)		24.15	25.98	21.45	12.44	23.06	12.48
Sub plots							
S1 = No residue		14.2(3.6)a	14.3(3.8)a	12.9(3.6)a	13.1(3.6)a	7.4(2.7)a	5.8(2.4)a
S2 = 15 cm ht. of rice	straw	15.2(3.7)a	14.1(3.7)a	12.7(3.6)a	14.9(3.9)a	7.0(2.6)a	5.9(2.4)a
LSD (0.05)		0.28	0.19	0.28	0.35	0.10	0.05
CV (%)		7.92	6.30	9.95	11.63	4.65	2.57
M1= Transplanting	S1	11.0(3.4)a	14.3(3.8)a	11.8(3.5)a	9.9(3.2)a	10.2(3.2)a	10.8(3.3)a
WIT- Transplanting	S2	14.0(3.8)a	13.7(3.7)a	11.0(3.4)a	12.8(3.6)a	9.0(3.1)a	11.1(3.4)a
M2 = Wet seeding	S1	11.5(2.9)a	11.5(3.4)a	11.2(3.4)a	13.1(3.7)a	5.1(2.3)a	3.1(1.9)b
IVIZ - VVEC SEEding	S2	11.5(2.9)a	11.5(3.4)a	11.2(3.4)a	16.5(4.1)a	5.1(2.3)a	3.1(1.9)b
M3 = Aerobic rice	S1	20.2(4.5)a	17.0(4.1)a	15.5(4.0)a	16.2(4.1)a	6.9(2.5)a	3.5(2.0)b
IVIS - ACTUBIC TICE	S2	20.2(4.5)a	17.0(4.1)a	15.8(4.0)a	15.5(4.0)a	6.9(2.5)a	3.5(2.0)b
LSD (0.05)	M in S	0.62	0.50	0.76	0.93	0.26	0.13
	S in M	2.67	1.64	1.37	1.01	1.88	0.14

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

Cropping system influence on insect pest incidence (CSIP), a collaborative trial with Agronomy was conducted at three locations, Karjat, Titabar and Ghaghraghat during Kharif 2022. Low incidence of stem borer, leaf folder, whorl maggot, and case worm was observed in different main plots of crop establishment methods and sub-plots of straw incorporation techniques at all the locations.

3. Evaluation of Pheromone Blends for Insect pests of Rice (EPBI)

A crucial step in devising strategies for Integrated Pest Management in Rice is the monitoring of insect pests. Pheromones have a lot of potential for managing and monitoring insect pests in rice. Pheromones are very compatible with other application techniques in an IPM plan due to their pest-specificity and safety against natural enemies. A trial on the evaluation of pheromone blends for insect pests of rice was continued with the main aim of assessment of normal and slow-release pheromone blends against yellow stem borer, leaf folder, and multiple species.

The trial was conducted at 9 locations in *Kharif* 2022. The field trial was constituted with two formulations: normal and slow-release formulations of rice leaf folder (RLF), yellow stem borer (YSB), and the multispecies blend of both RLF and YSB pheromone combination. All the lures were placed randomly in delta traps, and installed in the field and each blend was replicated five times. Observations were recorded on adult catches in each trap at the weekly interval, after the installation of traps. Simultaneously, field population counts were taken through visual count for stem borers, disturb and count method (DCM) for leaf folder, sweep net catches and light trap (LT) catches. The results were summarised below:

The adult catches of YSB was high in slow release blend compared to the normal blend in all the locations except at Coimbatore and Jagdalpur (Fig. 2.5.3.1). The peak mean catch was 69 moths/ week, at Ludhiana followed by IIRR (36/week) and Jagtial (27/week). Visual count (33) was high at Coimbatore while the sweep net counts (26) were high at Ludhiana compared to all other locations.

The leaf folder peak catches were reported from the slow release blend at Ludhiana (89/ week) followed by IIRR (66/week), and Jagtial (50/week) which was significantly different from other locations (Fig. 2.5.3.2). The catches recorded in Aduthurai, Chinsurah, and Jagdalpur were at par with each other. The catches were very low in both the formulations at Aduthurai, Coimbatore, Chinsurah, and Jagdalpur. However, the field population of the leaf folder was high with high adult counts in disturb and count method (DCM - 39) and sweep nets.

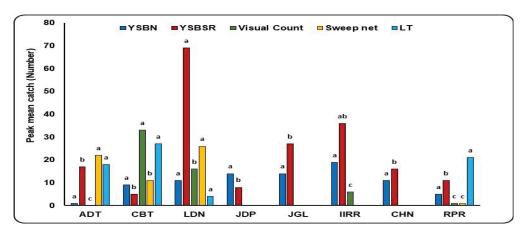


Fig. 2.5.3.1 Evaluation of Yellow stem borer pheromone formulations at different locations, Kharif 2022

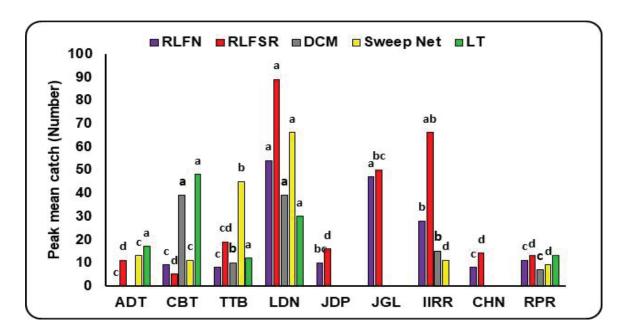


Fig. 2.5.3.2. Evaluation of rice leaf folder, *Cnaphalocrocis medinalis* pheromone formulations at various locations, *Kharif* 2022

Evaluation of multispecies pheromone blends at 5 locations revealed that more stem borer adults were caught in traps compared to leaf folders at all the locations. Catches were high in the slow-release formulation at Ludhiana (45/week) and IIRR (34/week) compared to the normal formulation (12-14/week). At all the locations, higher catches were recorded in the slow-release formulation compared to the normal formulation.

2.6 EVALUATION OF ENTOMOPATHOGENS AGAINST SUCKING PESTS OF RICE

The trial was initiated in 2022 with the objective of evaluating effective entomopathogens against sucking pests of rice identified though the AICRP on biocontrol programme, at multi-locations and hotspots.

During kharif 2022, the trial was taken up at nine locations *viz.*, Brahmavar, Chatha, Coimbatore, Gangavati, Karjat, Mandya, Moncompu, Navasari and Raipur with a susceptible variety of the location. Three entomopathogens *viz.*, *Lecanicillium saksenae* (1x10⁸ spores/g) @ 5 g/l), *Beauveria bassiana* (1x10⁸ spores/g) @ 5 g/l and *Metarhizium anisopliae* (1x10⁸ spores/g) @ 5 g/l) were compared with Thiamethoxam 0.2 g/l and untreated Control. The five treatments were replicated four times in a randomized block design. Foliar sprays of various treatments were taken up at fortnightly intervals twice during the reproductive phase for ear head bugs or during active tillering phase for hopper pests. Observations on population of ear head bugs and hopper pests one day before and 7 and 15 days after each spray was recorded from 25 hills selected at random. Data on natural enemies in 10 hills or per plot was also recorded.

Statistical analysis: Data was transformed appropriately and subjected to two-way ANOVA. Treatment effects across the locations (treatment*location interaction) were estimated to draw overall conclusions. Means were separated by LSD at five per cent level of significance.

1. Brahmavar

The number of ear head bugs at seven days after first spray was significantly lower with Lecanicillium saksenae treatment (4.00/ 25 hills) followed by Beauveria bassiana (4.50) compared with 18.00 bugs in untreated control (Table 2.6.1). At 15 days after first spray, the least number of ear head bugs were observed in L. saksenae sprayed plots (2.00/ 25 hills). Seven days after second spray, all the treatments showed significantly lesser number of ear head bugs compared to control (16.50), the least being observed with L. saksenae (1.25/25 hills). Metarhizium anisopliae with a population of 11.00/25 hills was the least effective among the bioagents tested. Similar trend was observed 15 days after second spray wherein all treatments showed significantly decreased number of ear head bugs, as compared to untreated control (16.25/25 hills). Overall, L. saksenae was the most effective treatment.

The number of mirid bugs did not differ significantly among the treatments. However, the highest number of mirids were observed in the control and M. anisopliae treated plots whereas the lowest number of mirids was found in thiamethoxam treatment. The number of spiders per plot was significantly higher in control (3.25). Among the other treatments L. saksenae recorded highest number of spiders per plot (2.00) while thiamethoxam treated plots did not register any spider count. The number of coccinellids was also significantly higher per plot in

untreated control (2.25). Overall, the natural enemy count was significantly higher in control followed by *L. saksenae*, *B. bassiana* and *M. anisopliae* treatments. Thiamethoxam registered lowest number of natural enemies. The highest yield was observed with *L. saksenae* treatment (2166.25 kg/ha) followed by thiamethoxam (2131.25 kg/ha. The least yield was observed in the control plot with 1996.88 kg/ha.

2. Chatha

Observations were recorded on populations of stink bugs, white leafhopper, green leafhopper and gundhi bug. The population was low and did not differ among treatments. Population of natural enemies *viz.*, spiders and coccinellids were also recorded and ranged from 1-2 individuals per plot in all treatments. The yield was significantly higher in the plots with *M anisoplea* treatment (3350 kg/ha) and the least was seen in untreated control (2887 kg/ha).

3. Coimbatore

The number of ear head bugs at seven days after first spray was significantly lower with *L. saksenae* treatment (5.00/25 hills) which was on par with thiamethoxam (4.75/25 hills) (**Table 2.6.2**). Similar trend was observed at 15 days after first spray. At seven days and 15 days after second spray, *L. saksenae and* thiamethoxam gave significantly better control of ear head bugs (1.5-2.0/25 hills) while other treatments were on par. Overall, *L. saksenae* was the most effective treatment among the bioagents. The number of mirid bugs was highest in the control (12.00/plot) and *L. saksenae* treated plots (13.75/plot) whereas significantly lower number of mirids were found in thiamethoxam treatment (4.75/plot). Similar trend was observed for number of spiders per plot. The number of spiders ranged from 4.00 in thiamethoxam treatment to 11.00/plot in untreated control (**Table 2.6.2**).

The yields were on par among treatments and ranged from 6649.13 to 6966.06 kg/ha.

4. Gangavathi

The population of hoppers was on par in all treatments and significantly lower (5.03 to 9.41/25 hills) as compared to untreated control (14.53 and 18.35/25 hills) after the first spray (**Table 2.6.3**). *L. saksenae* performed on par with thiamethoxam 7 days after second spray while both *L. saksenae* and *Beauveria bassiana* were as effective against hoppers as chemical control 15 days after second spray. The least effective bioagent against hoppers was *M anisopliae* (**Table 2.6.3**). The number of ear head bugs after first spray was significantly lower in all treatments as compared to untreated control, but the chemical thiamethoxam recorded significantly lowest population of bugs (2.44 and 1.54/25 hills) at 7 and 15 days after spraying (**Table 2.6.3**). Similar trend was observed after second spray though at 15 days after second spray, *L. saksenae and* thiamethoxam were on par (0.96-1.10/25 hills). The population of mirids, spiders and coccinellids were

significantly lower in thiamethoxam treated plots (3.09, 1.06 and 0.62/ m² respectively) **(Table 2.6.3)** while they were on par in all other treatments including untreated control (11.99, 5.40 and 3.03/ m² respectively) indicating minimal or no impact on natural enemy population **(Table 2.6.3)**.

The yields were on par among treatments and ranged from 5845 to 7155 kg/ ha and significantly higher than untreated control (2570 kg/ ha) (**Table 2.6.3**).

5. Karjat

The number of ear head bugs at five days after first spray was significantly lower with thiamethoxam and *L. saksenae* treatments (1.35 and 2.40/25 hills respectively) (**Table 2.6.4**). At seven days after first spray, the least number of ear head bugs were observed in thiamethoxam and *L. saksenae* sprayed plots (0.25 and 1.30/25 hills). The other two bio-agents *B bassiana* and *M anisopliae* were ineffective in reducing pest population. After second spray, all the treatments showed significantly lesser number of ear head bugs compared to untreated control (1.5-2.70/25 hills), with no bugs observed in thiamethoxam treatment. Overall, *L. saksenae* was the most effective treatment among bioagents.

6. Mandya

At seven days after first spray significantly lower population of bugs were observed with all treatments (2.16-3.24/25 hills)) except B. bassiana (3.75/25 hills) and untreated control (Table 2.6.5). At 15 days after first spray, the least number of ear head bugs were observed in thiamethoxam sprayed plots (1.16/25 hills) followed by L. saksenae treated plots (1.92/25 hills). Similar trend was observed after second spray, wherein all the treatments showed significantly lesser number of ear head bugs compared to the control (2.48-2.53/25 hills). The least number of bugs was observed in chemical treatment followed by L. saksenae (Table 2.6.5) The number of natural enemies viz., spiders and coccinellids were lowest in thiamethoxam treatment (8.50 and 2.50 /plot respectively). All other treatments were on par with spiders ranging from 27.50 – 36.00/plot and coccinellids ranging from 13.75-15.00/ plot among the control and bioagent treated plots. The highest yield was observed with thiamethoxam treatment (7120 kg/ha). But two bioagent treatments were on par with chemical control viz., L. saksenae and M. anisopliae (6153 and 5824 kg/ha respectively). The least yield was observed in the control plot with 2296 kg/ha.

7. Moncompu

Observations were recorded on population of green leafhopper, brown planthopper and ear head bug after imposing treatments. The population of leafhoppers ranged from 14.65-26.25/25 hills in untreated control. Population of green leafhoppers was on par (6.75 to 11.00/25 hills) in all treatments and significantly lower as compared to untreated control seven days after the first spray (**Table 2.6.6**). Similar trend was observed 7 days after second spray. On the other hand, 15 days after first and second spray thiamethoxam had significantly lower population (1.25 and 2.25/25 hills respectively) while the bioagent treated plots were on par, but

superior to untreated control. *L. saksenae* was the second most effective treatment after thiamethoxam, with population ranging from 7.25- 11.00 / 25 hills **(Table 2.6.6)**.

The population of brown planthopper ranged from 208.25 – 318.75/ 25 hills in untreated control. Population of planthoppers was on par and significantly lower in thiamethoxam and *L. saksenae* treated plots seven days after (73.5 and 58.75/25 hills respectively) and fifteen days after (6.97 and 6.59/25 hills) spray (**Table 2.6.6**). On the other hand, after second spray, thiamethoxam had significantly lower population (25.25 and 9.00/25 hills respectively) while the bioagent treated plots were on par but superior to untreated. *L. saksenae* was second most effective treatment with population ranging from 42.25 -87.25 / 25 hills after second spray (**Table 2.6.6**).

The treatments did not vary significantly in reducing ear head bug population after first spray including the chemical thiamethoxam (**Table 2.6.7**). 15 days after second spray, lower population (2.5/25 hills) was observed in *M anisopliae* treatment followed by thiamethoxam (4.5/25 hills). The yields were very low in all treatments and ranged from 1031 to 1425 kg/ha). The highest yield was observed in thiamethoxam followed by *L. saksenae* treatment which were on par (**Table 2.6.7**).

8. Navsari

All treatments were significantly more effective than untreated control which recorded 13.25 - 20.93 bugs per 10 hills. The number of ear head bugs was significantly lower with thiamethoxam treatment (4.00 - 5.75/10 hills) after first and second spray. The three bioagents did not differ significantly in their effectiveness **(Table 2.6.8)**.

The population of natural enemies were highest in untreated control 9.75, 7.75 and 8.50 mirids, spiders and coccinellids per plot. Thiamethoxam registered lowest number of natural enemies. The three bioagent treatments were on par, with the highest population recorded in *L. saksenae* treatment with 9.25, 6.25 and 6.75 mirids, spiders and coccinellids per plot. The highest yield was observed in thiamethoxam treatment (5339 kg/ha) and least in untreated control (4488 kg/ha). The three bioagents treatments were on par with a yield range of 4789 – 4948 kg/ha (**Table 2.6.8**).

9. Raipur

All treatments were significantly more effective than untreated control which recorded 4.25 - 6.00 ear head bugs per 25 hills. The number of ear head bugs were on par in all other treatments though the population of bugs was slightly lower in the bioagent treated plots. Among the bioagents the least population was observed in *L. saksenae* treated plots which reached 1.5/25 hills fifteen days after second spray **(Table 2.6.9)**.

The highest population of natural enemies was observed in untreated control with 3.00, 3.25 and 2.5 ground beetles, spiders and coccinellids per plot respectively **(Table 2.6.9)**. The number of spiders and coccinellids in *L. saksenae* treatment was on par with untreated control with 2.00 spiders and coccinellids per plot. Thiamethoxam registered lowest number of natural enemies. The lowest yield was observed in the control plot with 6275 kg/ha, while all other were on par with a yield range of 6963 – 7138 kg/ha **(Table 2.6.9)**.

Evaluation of entomopathogens against sucking pests of rice was taken up in nine locations to test the effectiveness of entomopathogens Lecanicillium saksenae, Beauveria bassiana and Metarhizium anisopliae against sucking pests especially the ear head bug in rice. The results indicated L. saksenae to be the most effective of the three pathogens tested in seven locations with no detrimental impact on natural enemies.

Table 2.6.1 Effect of entomopathogens on sucking pests and their natural enemies at Brahmavar, EESP, kharif 2022

		No.	ο of Ear head	of Ear head bugs / 25 hills			Natu	Natural enemies No./ plot	plot	Yield
Treatment		ISPRAY			II SPRAY		Mirid	300	rill caice	(kg/ha) *
	PC	7DAS	15DAS	21DAS/PC				Spider	Coccinella	
Lecanicillium saksenae @ 1 x 107 cfu ml	10.05	4.00	2.00	3.50	1.25	1.00	0.75	2.00	0.75	2466.05
⁻¹ KAU 7714 (20 g talc formulation/ L)	13.23	(2.11)	(1.56)	(2.00)	(1.31)	(1.22)	(1.10)	(1.56)	(1.10)	67.0017
Beauveria bassiana @1 x 108 cfu ml ⁻¹	10.01	4.50	3.75	5.50	2.50	1.75	0.75	1.00	0.75	00 1000
NBAIR Bb 5 (20 g talc formulation / L)	CZ:01	(2.20)	(2.06)	(2.45)	(1.70)	(1.49)	(1.10)	(1.18)	(1.10)	2004.30
Metarhizium anisopliae @ 1 x 108 cfu ml	11 75	7.25	9.75	11.50	9.50	11.00	1.00	0.25	0.50	2000
⁻¹ NBAIR Ma 4 (20 g talc formulation / L)	c/.	(2.73)	(3.20)	(3.46)	(3.16)	(3.39)	(1.22)	(0.84)	(0.97)	2020.13
	74	6.50	4.75	6.50	3.50	2.75	0.50	0.00	0.25	04040
Hamemoxam	06.1	(2.68)	(2.29)	(2.64)	(2.00)	(1.80)	(0.97)	(0.71)	(0.84)	67.1617
	11 00	18.00	17.00	19.00	16.50	16.25	1.00	3.25	2.25	4006 90
Califo	9.	(4.34)	(4.18)	(4.42)	(4.12)	(4.09)	(1.22)	(1.92)	(1.65)	1990.00
SED		0.32	0.12	0.07	0.13	60:0		0.14	0.19	
CD (0.05)	SN	0.71	0.27	0.16	0.29	0.19		0:30	0.41	
	famous de la compa	, J.								

Figures in parenthesis are square root transformed values; PC- pre-count; DAS- days after spraying;

Table 2.6.2 Effect of entomopathogens on sucking pests and their natural enemies at Coimbatore, EESP, kharif 2022

		No. of E	No. of Ear head bugs / 25 hills	25 hills		Natural ene	Natural enemies No./ plot	ri'.
Treatment		I SPRAY		SII	II SPRAY	F:::W	,	* (c4/c4)
	PC	7DAS	15DAS	7DAS	15DAS	MILIO	Japide	(ng/IIa)
Lecanicillium saksenae @ 1 x 107 cfu ml -1 KAU	13.75	5.00	5.50	3.75	2.00	12.00	8.00	90 9909
7714 (20 g talc formulation/ L)	(3.74)	(2.33)	(2.44)	(2.05)	(1.56)	(3.53)	(2.90)	00:0060
Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb 5	18.25	10.25	9.75	5.50	3.25	9.50	7.25	6766 40
(20 g talc formulation / L)	(4.32)	(3.27)	(3.19)	(2.44)	(1.92)	(3.16)	(2.75)	61.0070
Metarhizium anisopliae @ 1 x 108 cfu ml -1 NBAIR	17.25	11.25	9.75	5.00	3.50	9.25	6.25	00 00
Ma 4 (20 g talc formulation / L)	(4.20)	(3.42)	(3.19)	(2.32)	(1.98)	(3.11)	(2.56)	00.0070
	13.50	4.75	7.75	2.50	1.50	4.75	4.00	70000
וומוופוווסאמווו	(3.69)	(2.27)	(2.86)	(1.70)	(1.40)	(2.27)	(2.08)	0302.31
	14.50	17.50	21.00	00.6	6.50	13.75	11.00	6640.42
	(3.84)	(4.23)	(4.63)	(3.07)	(5.64)	(3.76)	(3.38)	0049.13
SED		0.19	0.21	0.25	0.20	0.22	0.32	
CD (0.05)	SN	0.40	0.46	0.54	0.44	0.49	02'0	
	0							

Figures in parenthesis are square root transformed values; PC- pre-count; DAS- days after spraying;

Table 2.6.3 Effect of entomopathogens on sucking pests and their natural enemies at Gangavathi, EESP, kharif 2022

		No. of Ea	No. of Ear head bugs / 25 hills	s / 25 hills				NO. of hoppers/25 hills	pers/25 hil	S		No. c	of natural e	No. of natural enemies/m ²	
Treatment		I SPRAY		II SF	II SPRAY		I SPRAY			II SPRAY					Yield
	PC	7 DAS	15 DAS	7 DAS	15 DAS	PC	7 DAS	15 DAS	PC	2 DAS	15 DAS	Mirid	Spider	Coccinellid	(kg/na)
Lecanicillium saksenae @ 1	3.88	3.31	2.62	2.01	1.10	11.20	8.70	8.09	8.97	5.81	1.50	10.58	4.68	2.89	7155
(20 g talc formulation/ L)	(2.09)	(1.95)	(1.76)	(1.58)	(1.26)	(3.42)	(3.03)	(2.93)	(3.08)	(2.51)	(1.41)	(3.33)	(2.27)	(1.84)	(84.56)
Beauveria bassiana @1 x	3.81	3.62	3.05	2.27	2.18	11.63	9.41	8.45	8.95	6.34	5.04	10.22	4.5	2.81	6065
g talc formulation / L)	(2.07)	(2.03)	(1.88)	(1.66)	(1.64)	(3.48)	(3.15)	(5.99)	(3.07)	(2.61)	(2.35)	(3.27)	(2.24)	(1.82)	(77.79)
Metarhizium anisopliae @ 1	3.92	3.15	2.46	1.99	1.46	12.15	8.81	7.99	8.78	5.42	2.03	10.53	4.58	2.86	6935
X 10° CTU ml -! INBAIR Ma 4 (20 g talc formulation / L)	(2.10)	(1.91)	(1.72)	(1.58)	(1.40)	(3.56)	(3.05)	(2.91)	(3.05)	(2.43)	(1.59)	(3.32)	(2.25)	(1.83)	(83.26)
Thiomothomogram	3.99	2.44	1.54	1.24	96.0	11.90	5.78	5.03	8.50	3.12	5.92	3.09	1.06	0.62	5845
I IIIaii leii loxaiii	(2.12)	(1.71)	(1.43)	(1.32)	(1.21)	(3.52)	(2.50)	(2.35)	(3.00)	(1.90)	(2.52)	(1.88)	(1.25)	(1.06)	(76.40)
1000	3.91	4.24	4.85	5.32	5.54	11.55	14.53	18.35	25.26	32.29	39.21	11.99	5.40	3.03	2570
	(2.10)	(2.18)	(2.31)	(2.41)	(2.46)	(3.47)	(3.87)	(4.34)	(5.07)	(5.73)	(6.30)	(3.54)	(2.43)	(1.88)	(50.57)
SED		0.03	0.07	0.05	0.05		0.07	0.07	0.11	60'0	0.10	0.08	20'0	0.05	2.69
CD (0.05)	SN	0.07	0.15	0.10	0.11	SN	0.15	0.15	0.24	0.21	0.21	0.16	0.15	0.10	5.86
			-	•			-	-	7						

Figures in parenthesis are square root transformed values; PC- pre-count; DAS- days after spraying; *extrapolated

Table 2.6.4 Effect of entomopathogens on sucking pests at Karjat, EESP, kharif 2022

		No. of	No. of Ear head bugs / 25 hills	ls / 25 hills	
Treatment		ISPRAY		IS II	II SPRAY
	PC	5 DAS	7 DAS	3 DAS	5 DAS
(1) mitalizana olat = 00/1/17 11/11 = 1 miles 10/2 x 2 @ concessor millioinoco 1	9.45	2.40	1.30	90.0	0.45
recallicilium sansenae (20 m. 19 cum m. 1990 17 m. (20 guaichmaiann) r)	(3.15)	(1.70)	(1.34)	(1.07)	(0.97)
(1) mitaliana olat = 100 = 100 100 100 100 100 100 100 100 100 100 100 100 100 100	11.10	4.30	3.35	1.60	1.05
Deauveria bassiaria (@ X 10° ciu IIII Indair du 3 (20 g taic iui IIII iuatiui / L)	(3.40)	(2.17)	(1.95)	(1.44)	(1.24)
(1) rotalization of the MOINDIA I MIDAL OF A Collection of the MOINDIA COLL	10.30	4.50	2.85	1.55	1.05
Metantiziuni ansopiae (2017 - 10° ciu IIII) i Nderin ma 4 (20 guaic ionnauon) 7	(3.28)	(2.22)	(1.83)	(1.43)	(1.24)
Thismosphania	10.90	1.35	0.25	00'0	00.0
וומוופנווסאמווו	(3.37)	(1.36)	(0.86)	(0.71)	(0.71)
الميليدي	11.75	09'9	2.60	2.70	1.75
COLLITOR	(3.50)	(2.63)	(2.45)	(1.78)	(1.49)
SED		0.19	0.17	0.12	0.10
CD (0.05)	NS	0.41	0.36	0.26	0.21

Figures in parenthesis are square root transformed values; PC- pre-count; DAS- days after spraying; *extrapolated

Table 2.6.5 Effect of entomopathogens on sucking pests and their natural enemies at Mandya, EESP, kharif 2022

			ord no Trans	J h / OF hills			Metinia Iamitali	tola / old oc:	
			NO. OT EAF NEA	No. of Ear nead bugs / 25 nills			natural enemies no./ piot	les No./ piot	7:517
Treatment		I SPRAY			II SPRAY		307:40	٥	rieid (kg/ba) *
	PC	7 DAS	15 DAS	21 DAS/PC	7 DAS	15 DAS	Spider	Coccinellia	(ng/IIa)
Lecanicillium saksenae @ 1 x 10 ⁷ cfu ml ⁻¹ KAU	4.70	2.89	1.92	2.49	1.73	1.28	28.25	13.75	6153
7714 (20 g talc formulation/ L)	(2.28)	(1.84)	(1.55)	(1.73)	(1.49)	(1.33)	(5.29)	(3.63)	(78.12)
Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb	3.97	3.75	3.27	4.22	3.86	3.45	27.50	16.50	4168
5 (20 g talc formulation / L)	(2.11)	(2.06)	(1.94)	(2.17)	(5.09)	(1.99)	(5.21)	(4.08)	(64.21)
Metarhizium anisopliae @ 1 x 108 cfu ml ⁻¹	3.82	3.24	2.68	3.04	2.24	2.07	31.75	14.75	5824
NBAIR Ma 4 (20 g talc formulation / L)	(2.08)	(1.93)	(1.78)	(1.88)	(1.65)	(1.60)	(5.64)	(3.84)	(76.16)
T-1,000-1,01	4.23	2.16	1.16	1.87	1.05	0.82	8.50	2.50	7120
	(2.17)	(1.63)	(1.29)	(1.54)	(1.24)	(1.14)	(2.94)	(1.70)	(84.32)
	3.32	3.96	4.63	5.31	2.68	5.90	36.00	15.00	2296
	(1.95)	(2.11)	(2.26)	(2.41)	(2.48)	(2.53)	(2.96)	(3.87)	(47.63)
SED		90.0	90'0	90.0	60'0	0.08	0.61	0.58	4.21
CD (0.05)	NS	0.12	0.14	0.13	0.19	0.17	1.32	1.26	9.18

Figures in parenthesis are square root transformed values; PC- pre-count; DAS- days after spraying; *extrapolated

Table 2.6.6 Effect of entomopathogens on hoppers at Moncompu, EESP, kharif 2022

			No. of G	of GLH / 25 hills	S				No. of BPH/ 25 hills	5 hills		
Treatment		I SPRAY			II SPRAY			I SPRAY			II SPRAY	
	PC	7 DAS	15 DAS	PC	7 DAS	15 DAS	Эd	7 DAS	15 DAS	ЭЫ	7 DAS	15 DAS
Lecanicillium saksenae @ 1 x 10 ⁷ cfu ml ⁻¹	19.50	11.00	8.00	13.75	09.6	7.25	140.00	73.50	48.50	87.25	59.50	42.25
KAU 7714 (20 g talc formulation/ L)	(4.46)	(3.37)	(2.89)	(3.76)	(3.15)	(2.77)	(11.80)	(8.55)	(6.97)	(9.31)	(7.72)	(6.48)
Beauveria bassiana @1 x 108 cfu ml-1	14.00	10.00	8.00	13.25	6.75	9.00	164.50	128.50	71.25	133.75	94.75	71.50
NBAIR Bb 5 (20 g talc formulation / L)	(3.80)	(3.23)	(2.88)	(3.69)	(3.19)	(3.05)	(12.74)	(11.25)	(8.37)	(11.58)	(9.75)	(8.47)
Metarhizium anisopliae @ 1 x 108 cfu ml -1	16.00	10.50	9.25	11.75	8.50	5.75	192.50	158.00	96.25	153.50	111.75	91.50
NBAIR Ma 4 (20 g talc formulation / L)	(4.02)	(3.27)	(3.09)	(3.50)	(2.98)	(2.49)	(13.72)	(12.48)	(6.79)	(12.39	(10.58)	(9.57)
F F	20.25	6.75	1.25	16.00	09'9	2.25	222.25	58.75	43.25	48.50	25.25	9.00
Півіпепіохапі	(4.53)	(2.68)	(1.27)	(4.05)	(2.63)	(1.57)	(14.84)	(7.65)	(6.59)	(6.93)	(2.00)	(2.81)
Contract	14.25	22.25	22.00	19.00	22.75	26.50	208.25	235.00	318.75	223.75	256.25	285.00
	(3.80)	(4.74)	(4.71)	(4.38)	(4.80)	(5.19)	(14.38)	(15.23)	(17.76)	(14.95)	(16.00)	(16.88)
SED		98.0	0.38	0.31	0.29	0.31		1.04	1.00	69.0	0.57	0.68
CD (0.05)	NS	72.0	0.83	0.67	69.0	89.0	SN	2.27	2.18	1.37	1.25	1.48
	-	-	-		1]						

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated 2.88

Table 2.6.7 Effect of entomopathogens on earhead bugs and their natural enemies at Moncompu, EESP, kharif 2022

		N	lo. of Ear hea	No. of Ear head bugs / 25 hills			Natu	Natural enemies No./ plot	s No./ plot	77:3
Treatment		I SPRAY		=	II SPRAY		PiniM	Coldor	مناوعنووي	rieid (kg/ha) *
	PC	7DAS	15DAS	21DAS/PC	7 DAS	15 DAS	MILIO	obide	Coccinellia	(ng/ila)
Lecanicillium saksenae @ 1 x 107 cfu ml -1 KAU	25.00	19.75	14.75	17.50	13.75	10.50	37.75	12.25	19.25	1350
7714 (20 g talc formulation/ L)	(5.03)	(4.48)	(3.89)	(4.22)	(3.76)	(3.31)	(6.18)	(3.57)	(4.43)	(36.67)
Beauveria bassiana @1 x 108 cfu ml·¹ NBAIR Bb	16.75	13.25	8.25	12.25	7.00	4.50	45.50	10.25	14.75	1185
5 (20 g talc formulation / L)	(4.12)	(3.64)	(2.71)	(3.55)	(2.72)	(2.03)	(8.78)	(3.25)	(3.90)	(34.35)
Metarhizium anisopliae @ 1 x 108 cfu ml -1	19.50	13.50	7.75	10.25	4.50	2.50	36.75	12.75	14.50	1087
NBAIR Ma 4 (20 g talc formulation / L)	(4.41)	(3.67)	(2.76)	(3.25)	(2.22)	(1.59)	(60.9)	(3.61)	(3.86)	(32.95)
	23.50	14.75	10.50	12.50	9.50	4.25	36.50	11.25	21.00	1425
ווומוווסאמווו	(4.87)	(3.89)	(3.30)	(3.57)	(3.14)	(2.13)	(6.07)	(3.41)	(4.62)	(37.73)
- C. S. S. C.	15.00	18.50	17.75	14.00	12.75	15.50	45.75	9.50	19.75	1031
COLING	3.91	(4.35)	(4.25)	(3.80)	(3.60)	(3.97)	(6.79)	(3.14)	(4.46)	(32.05)
CD (0.05)	NS	SN	NS	NS	NS	1.15	SN	NS	NS	3.63

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

Table 2.6.8 Effect of entomopathogens on sucking pests and their natural enemies at Navsari, EESP, kharif 2022

Pc Lecanicillium saksenae @ 1 x 10² cfu ml -¹ KAU 9.77 7714 (20 g talc formulation/ L) (3.20) Beauveria bassiana @1 x 10³ cfu ml ¹ NBAIR Bb 9.21 5 (20 g talc formulation / L) (3.11) Metarhizium anisopliae @ 1 x 10³ cfu ml ¹ 8.90 NBAIR Ma 4 (20 g talc formulation / I) (3.6)	8.00						200
x 107 cfu ml -1 KAU L) 08 cfu ml-1 NBAIR Bb x 108 cfu ml -1	8.00	II SPRAY	Mirid	Spider	Coccinellid	(kg/ha) *	Kg/ha
L) 08 cfu ml-1 NBAIR Bb x 108 cfu ml -1	(00 0)	10.25	9.25	6.25	6.75	4789	7093
08 cfu ml-1 NBAIR Bb x 108 cfu ml -1	(7.30)	(3.28)	(3.12)	(2.60)	(2.69)	(69.20)	(84.22)
x 108 cfu ml -1	8.25	11.25	00.6	00.9	7.00	4884	7184
ml -1	(2.95)	(3.42)	(3.08)	(2.55)	(2.74)	(69.88)	(84.76)
	6.75	9.75	8.50	6.75	6.75	4948	7154
	(5.69)	(3.20)	(2.99)	(5.69)	(2.69)	(70.34)	(84.58)
96.8	4.00	5.75	4.25	3.00	3.00	5339	7261
I niametrioxam (3.07)	(2.11)	(2.49)	(2.18)	(1.86)	(1.86)	(73.07)	(85.21)
8.92	13.25	20.93	9.75	7.75	8.50	4488	7384
(3.07)	(3.70)	(4.62)	(3.20)	(2.87)	(3.00)	(66.99)	(85.93)
SED	0.16	0.17	0.13	0.10	0.12	0.79	
CD (0.05) NS	0.35	0.37	0.28	0.22	0.26	1.72	NS

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

Table 2.6.9 Effect of entomopathogens on sucking pests and their natural enemies at Raipur, EESP, kharif 2022

		No. of	Ear head bu	No. of Ear head bugs / 25 hills		Natural	Natural enemies No./ plot	o./ plot	7 %
Treatment		ISPRAY		II SPRAY	RAY	Ground	Spider	Coccinellid	rieid (ka/ha) *
	PC	7 DAS	15 DAS	7 DAS	15 DAS	beetles	obido		(1)
Lecanicillium saksenae @ 1 x 107 cfu ml ⁻¹	4.25	4.00	2.75	2.50	1.50	1.25	2.00	2.00	7100
KAU 7714 (20 g talc formulation/ L)	(2.17)	(2.11)	(1.79)	(1.73)	(1.40)	(1.31)	(1.56)	(1.56)	(84.24)
Beauveria bassiana @1 x 108 cfu ml¹ NBAIR	4.25	3.25	3.50	2.50	2.00	1.00	1.50	1.75	6963
Bb 5 (20 g talc formulation / L)	(2.17)	(1.92)	(1.98)	(1.73)	(1.58)	(1.22)	(1.40)	(1.49)_	(83.43)
Metarhizium anisopliae @ 1 x 108 cfu ml 1	4.25	2.50	2.50	2.25	1.50	2.00	1.50	2.50	7075
NBAIR Ma 4 (20 g talc formulation / L)	(2.17)	(1.73)	(1.73)	(1.65)	(1.40)	(1.56)	(1.40)	(1.73)	(84.10)
	4.25	2.25	4.00	3.25	2.50	1.00	1.25	1.00	7138
Lniametroxam	(2.17)	(1.63)	(2.10)	(1.920	(1.73)	(1.22)	(1.31)	(1.22)	(84.46)
	5.25	4.75	4.25	5.50	00'9	3.00	3.25	2.50	6275
COINTO	(2.38)	(2.28)	(2.17)	(2.440	(2.54)	(1.86)	(1.92)	(1.73)	(79.20)
SED		0.18		0.13	0.14	0.13	0.17	0.14	1.54
CD (0.05)	NS	0.38	NS	0.28	08.0	0.27	98'0	08.0	3.35
		9							

Figures in parenthesis are square root transformed values; PC- pre-count; DAS- days after spraying; *extrapolated

2.7 INTEGRATED PEST MANAGEMENT STUDIES

Biotic constraints like insect pests, diseases, and weeds ravage rice crop throughout the crop growth period, and holistically managing these pests are of significant concern to the farmers. Although IPM is an established concept that all the stakeholders universally acknowledge, IPM implementation at the farmer level is constrained due to its knowledge-intensive nature and the need for specific skills for making judgements and choosing IPM solutions for the sustainable management of pests. To overcome these limitations, a participatory IPMs trial was continued in collaboration with agronomists and plant pathologists to validate IPM practices from a basket of available options and demonstrate to farmers the management of pests (including insects, diseases) weeds) in a holistic way.

During *Kharif* 2022, the IPMs trial was conducted zone-wise in 19 locations and 40 farmers' fields. The pest management practices followed in IPM and farmers' practice (FP) at these locations are given in Tables. The details of pest incidence zone-wise are discussed below:

Zone I – Hilly areas

The IPMs trial was conducted in three farmers' fields at two locations in this zone. Location-wise details of the village, district and farmers are given below:

S.No	State	Location	Village/District	Farmer Name
1	Jammu & Kashmir	Khudwani	Hiller village, Anantnag district	Sri Nazir Ahmad Teeli
2	Jammu & Kashmir	Khudwani	Brazloo	Sri. M Abbas Malik
3	Himachal Pradesh	Malan	Jia Haar village, Kangra district	Sri Santokh Singh

1) **Khudwani, Jammu and Kashmir:** The incidence of grasshoppers alone was reported from both IPM and FP plots in Shalimar rice-3 and Shalimar rice-5 at this location. The damage was relatively low in IPM plots compared to FP plots (**Table 2.7.1**). Grain yield was high in IPM plots resulting in high gross returns and BC ratio.

Table 2.7.1 Pest incidence, grain yield and BC ratio in IPMs trial at Khudwani, Kharif 2022

		% (GHDL .	Yield	Gross	Cost of	Net	ВС
Farmer Name	Treatments	30 DAT	80 DAT	(kg/ ha)	Returns (Rs.)	Cultivation (Rs.)	Returns (Rs.)	Ratio
	IPM	6.0 ± 0.4	7.0 ± 0.1	8768	122752	61450	61302	2.00
Sri. Nazir Ahmad Teeli	FP	6.8 ± 0.6	10.7 ± 0.3	7050	98700	62250	36450	1.59
	IPM	4.7 ± 0.4	7.9 ± 0.1	7518	105245	58500	46745	1.80
Sri M Abbas Malik	FP	5.9 ± 0.4	11.6 ± 0.4	5050	70700	61750	8950	1.14

Price of Paddy = Rs. 1400/g

2) Himachal Pradesh, Malan: IPMs trial was conducted in Sri Singh's field at Jia Haar village, Kangra district, Himachal Pradesh State. Kasturi Basmati was grown in IPM field and Jheni, a local variety was grown in FP plot.

Practices followed in IPMs trial at Malan, Kharif 2022

	IPM Practices	Farmers Practices
Area	10 ha	10 ha
Variety	Kasturi Basmati	Jheni, a local variety
Nursery	Line sowing	Broadcast nursery
	 Application of FYM 	 Application of urea @ 30 kg
Main field	 Application of 90 kg N, 40 kg P and 40 kg K. 	Applied of 30 kg urea
	 Application of herbicide – Bispyribac sodium salt 	 Manual weeding
	Sprayed Chlorpyriphos	
	Application of Bavistin	

Dead hearts caused by black beetle was significantly higher in FP plot (31.8%) compared to IPM plot (24.2%). Leaf folder damage was significantly low in IPM plot (11.5%) compared to farmer's practices (16.9%). The incidence of hispa and BPH was low in both the treatments. High grain yield was recorded in IPM plot (36.40 q/ ha) resulting in higher gross returns and BC ratio compared to farmers' practices (**Table 2.7.2**). The weed population at 30 DAT and 60 DAT in IPM plots was lower than farmers practice by 30.6 and 27.6%, respectively. The dry weed biomass was lower in IPM implemented fields by 49.7 and 18.2%, respectively (**Table. 2.7.3**). The mean grain yield advantage was 51.05 in IPM adopted plots.

Table 2.7.2 Pest incidence, grain yield and BC ratio in IPMs trial at Malan, Kharif 2022

Treatments		e to black etle	% LFDL	% HDL	BPH (No./5 hills)	Yield (kg/ ha)	Gross Returns (Rs.)	Cost of Cultivation (Rs.)	Net Returns (Rs.)	BC Ratio
	29 DAT	36 DAT	43 DAT	57 DAT	43 DAT		(13.)	(NS.)	(13.)	
IPM	24.2 ± 3.7b	20.9 ± 4.7b	11.5 ± 1.2b	0.0 ± 0.0a	4.0 ± 0.4a	3640 ± 123a	145600	46080	99520	3.16
FP	31.8 ± 3.2a	34.3 ± 4.0a	16.9 ± 2.8a	3.1 ± 0.4a	7.0 ± 0.8a	2208 ± 60b	88320	34968	53352	2.53

Price of Paddy = Rs. 4000/q

Table 2.7.3. Weed population and weed dry mass at Malan, Kharif 2022

Treatments	Weed pop no/m			biomass m²
	30 DAT	60 DAT	30 DAT	60 DAT
IPM	4.8(2.3)	11.2(3.3)	1.0	7.8
FP	14.0(3.7)	31.2(5.6)	6.1	29.9
Mean	3.0	4.5	3.6	18.9
CD (0.05)	0.89	0.86	2.26	5.25

Values in parenthesis are square-root transformed values

Zone II – Northern areas

In this zone, IPMs trial was conducted in seven farmers' fields across three locations. Location wise details of village/district and farmers are provided in table below.

S. No	State	Location	Village/district	Farmer Name
1	Haryana	Kaul	Karsa Dod village/ Kaithal district	Sri. Dalsher Singh
2	Haryana	Kaul	Rsina village/ Kaithal district	Sri Mahender
3	Punjab	Ludhiana	Sudhar village/ Ludhiana district	Sri Inderjeet Singh
5	Uttarakhand	Pantnagar	Panchananpur, Dineshpur/Udham Singh Nagar	Sri Ganesh Bairagi
6	Uttarakhand	Pantnagar	Panchananpur, Dineshpur/Udham Singh Nagar	Sri Prabhash Sarkar
7	Uttarakhand	Pantnagar	Durgapuri No.1,, Dineshpur mandal/Udham Singh Nagar	Sri Vimal Bairagi

The package of practices followed in IPM and FP plots are given hereunder:

Practices followed in IPMs trial in Zone II (Northern areas), Kharif 2022

	owed in IPMs trial in Zone II (Northern areas)	, MIAIII 2022
	wed in IPMs trial at Kaul, <i>Kharif</i> 2022	
	alsher Singh, village – Karsa Dod, Kaithal district, Ha ahender, village – Rasina, Kaithal district, Haryana	ryana
	IPM Practices	Farmer Practices
Area	0.4 ha	0.4 ha
Variety	CSR 30	CSR 30
Nursery	 Seed treatment with Bavistin 10 g + Streptocycline 1g / 10 kg seed Application of 1 kg DAP, 1 kg urea and FYM 40 kg Sprayed Bispyribacsodium 10% SC @ 0.4 ml/ liter water at 15 – 20 DAS 	 Seed treatment with Bavistin 10 g + Streptocycline 1g / 10 kg seed Application of 1 kg DAP and 2 kg urea
Main Field	 Cutting of leaf tips before transplanting Application of 25 kg DAP, 40 kg Urea, Zinc 10 kg Application of Pretilachlor @ 1200 – 1500 ml/ ha Release of <i>Trichogramma chilonis</i> @ 40000/ acre, 3-4 times starting at 31 DAT Installation of bird perches @ 10/ acre Mid-season drainage of the field Sprayed Flubendiamide 20 WG @ 50 g/ acre Applied Lustre (flusilazole + carbendazim) @ 400 ml/ acre for sheath blight control Application of Triflumezopyrim 10 SC @ 94 ml/ acre at 55 DAT 	 Application of 150 kg urea as top dressing Application of Pretilachlor @ 1200 – 1500 ml/ ha Application of cartap hydrochloride @ 7.5 kg/ acre Two sprays of mixture of insecticides Spray a mixture of insecticide and fungicide Applied Streptocycline @ 15g/ha + Copper oxycloride @ 500g/ha, Propiconazole 25 EC @ 1000ml/ha
	wed in IPMs trial at Ludhiana, Kharif 2022	ah.
3) Sri Ind	derjeet Singh, village Sudhar, Ludhiana district, Punja Half acre	AD Half acre
Variety	PR 126	PR 126
Nursery	Application of urea @ 1.0 kg and Zinc sulphate @ 1 kg/ acre nursery	Application of urea @ 1.0 kg/ acre nursery and Zinc sulphate @ 1 kg/ acre nursery
Main field	 Alley ways of 30 cm after every 2 m Application of Butachlor @ 1.2 L/ acre Sprayed Fame (flubendiamide) 480 SC @ 20 ml/acre Sprayed Triflumezopyrim 10% SC (Pexalon) @ 94 ml/ acre & Tilt @ 200ml/ acre Recommended dose of neem coated urea-90 kg/ acre Growing flowering plants like marigolds, soybean, cowpea, moong, and sesamum on bunds Water management for planthoppers 	 Applied neem coated urea 120 kg and zinc sulphate 25 kg/ acre Application of Butachlor @ 1.2 L/ acre Application of Mortar @ 170 g/ acre Sprayed Chess @ 140g/ acre Sprayed Tilt + Nativo (tebuconazole and trifloxystrobin) @ 200 + 80 ml/ acre

ICAR-IIRR Annual Progress Report 2022, Vol. 2 – Entomology

Practices follo	owed in IPMs trial at Pantnagar, <i>Kharif</i> 2022				
4) Sri Ganes	sh Bairagi, Panchananpur, Dineshpur village, Udham	singh nagar district, Uttarakhand			
Area	2500 sq.m	2500 sq.m			
Variety	HKR 47	HKR 47			
Main Field	 Application of NPK @ 100 kg/ ha, Zinc @ 25 kg/ ha, urea @ 120 kg/ ha Application of Bispyribac Sodium @250 ml/ha Sprayed Cartap hydrocloride 50% SP@ 600g/ha Sprayed Triflumezopyrim 10% SC(Pexalon) @ 94 ml /acre Applied streptocycline @15 g/ha + copper oxycloride @ 500 g/ha; Hexaconazole 5% EC@ 2 ml/litre Installed pheromone traps for YSB @ 8/ ha 	 Application of NPK @ 120 kg/ acre, Chelated Zin @ 6 kg/ha and urea 120 kg/ ha, mono sulphur 8 kg/ acre Application of Pretilachlor 50 EC @ 1.5 liter/ ha; Nominee gold @ 200 ml/ ha Applied Cartap Hydrocloride 4.0 GR @ 19kg/ha, Chlorantrniliprole 18.5%(Coragen) @ 150 ml/ha, Buprofezin 25 SP @1000 ml /ha, Triflumezopyrim 10% SC(Pexalon) @ 94 ml /acre Applied Streptocycline @ 15g/ha + Copper oxycloride @ 500g/ha, Propiconazole 25% EC(Tilt) @ 500 ml/ha 			
	hash Sarkar, Panchananpur, Dineshpur village, Udha				
Area	2500 sq.m	2500 sq.m			
Variety	PR 121	PR 121			
Main Field	 Application of NPK 100 kg/ ha, Zinc 25 kg and Urea 120 kg Application of Bispyribac Sodium 10% SC@ 250 ml/ha Sprayed Cartap hydrocloride50% SP @ 600g/ha- two times and Triflumezopyrim 10% SC(Pexalon) @ 94 ml /acre Applied streptocycline @15 g/ha + copper oxicloride @ 500g/ha, Hexaconzole 5%EC @ 2ml/litre Installed pheromone traps for YSB @ 8/ ha 	 Application of NPK 120 kg/ ha, Chelated Zinc @ 6 kg/ ha and Urea 120 kg/ha, mocronutrient granules @ 10 kg/ ha Applied Pretilachlor @1.5 liter/ha, Nominae gold 200 ml/ha Application of Cartap Hydrocloride 4.0 GR @ 19kg/ha, Chlorpyriphos 50% + Cypermethrin 5% EC @ 800 ml/ha, Buprofezin 25 SP @1000 ml /ha, Triflumezopyrim 10% SC(Pexalon) @ 94 ml /acre Applied Streptocycline @ 15g/ha + Copper oxycloride @ 500g/ha, Propiconazole 25 EC @ 500ml/ha 			
· ·	Bairagi, Durgapuri No.1, Dineshpur village, Udhams				
Area	2500 sq.m	2500 sq.m			
Variety	PR 121	PR 121			
Main Field	 Application of NPK 100 kg/ ha, Zinc 25 kg and Urea 120 kg Application of Bispyribac Sodium 10% SC@ 250 ml/ha Applied Cartap Hydrocloride 50% SP @ 600 g/ha, Triflumezopyrim 10% SC(Pexalon) @ 94 ml /acre Applied streptocycline @15 g/ha + copper oxicloride @ 500g/ha, Hexaconazole 5% EC@ 2 ml/litre Installed pheromone traps for YSB @ 8/ ha 	 Application of NPK 120 kg/ ha, Chelated Zinc @ 6 kg/ ha and Urea 120 kg/ha, Mono sulphur @ 8 kg/ acre Applied Pretilachlor @ 1.5 L/ ha, Nominee gold 200 ml/ ha Fertera@ 10 kg/ha, Fipronil 5% SC @ 1000 ml/ha, Chlorpyriphos 20% @1000 ml /ha, Imidachloprid 17.8% SL@ 150ml/ha, Triflumezopyrim 10% SC(Pexalon) @ 94 ml /acre Applied Streptocycline @ 15g/ha + copper oxycloride @ 500g/ha, Propiconazole 25% EC @ 500 ml/ha 			

Incidence of stem borer, leaf folder, BPH, and WBPH was observed in both IPM and FP plots at all the farmers' fields in this zone **(Table 2.7.4)**. The incidence of leaf folder was significantly low in IPM plots (2.4-2.6% LFDL) compared to FP plots of both the farmers (22.3–23.9% LFDL) at Kaul. BPH numbers were significantly low in Sri Mahender's IPM plot (6/5 hills) at Kaul compared to the FP plot (59/5 hills). At all other farmer fields, the incidence of different pests was low.

Table 2.7.4 Insect Pest incidence in IPMs trial in Zone II (Northern), Kharif 2022

	Treatments		% DH/WE	% LFDL	BPH	WBPH	Yield kg/ha
KUL	F1 Cri Dolohor Cinah	IPM	4.6(2.2)b	2.6(1.7)b	19(4)b	19(4)a	3880(62)a
KUL	· ·		7.1(2.7)a	22.3(4.6)a	45(6)a	14(4)a	3648(61)a
	LSD(0.05,36 df)		0.22	0.08	0.36	0.32	2.69
KUL	F2 - Sri Mahender	IPM	3.7(2.0)b	2.4(1.7)b	6(3)b	4(2)b	3817(62)a
NUL	FZ - SIT Marieriuei	FP	6.5(2.6)a	23.9(4.8)a	59(7)a	10(3)a	3376(58)b
	LSD(0.05,36 df)		0.19	0.09	0.32	0.31	3.44
LDN	F3 - Sri Inderjeet Singh	IPM	3.7(1.9)b	2.6(1.6)a	12(4)b	12(4)b	7060(84)a
LDN	F3 - 311 illderjeet 3iligit	FP	4.9(2.3)a	2.7(1.6)a	17(4)a	14(4)a	6844(83)a
	LSD(0.05,36 df)		0.29	0.06	0.31	0.35	1.61
PNT	F4 = Sri Ganesh Bairagi	IPM	5.4(2.3)a	0.1(0.8)a	16(4)b	1(1)a	5942(77)a
FINI	14 - Sil Gallesii Ballagi	FP	5.7(2.4)a	0.2(0.8)a	20(4)a	2(2)a	5570(75)b
	LSD(0.05,36 df)		0.25	0.07	0.36	0.31	1.88
PNT	F5 = Sri Prabhash Sarkar	IPM	4.6(2.2)b	0.3(0.8)a	19(4)a	2(1)b	6146(78)a
FINI	FINI FIGURE FI		7.6(2.8)a	0.3(0.8)a	21(4)a	4(2)a	5788(76)b
	LSD(0.05,36 df)		0.29	0.10	0.54	0.33	2.25
PNT	F6 = Sri Vimal Bairagi	IPM	4.8(2.2)a	0.3(0.9)a	14(4)a	1(1)b	5926(77)a
FINI	1 0 = SIT VIIIIai Dallagi	FP	5.2(2.4)a	0.3(0.8)a	13(4)a	2(2)a	5420(74)a
	LSD(0.05,36 df)		0.26	0.06	0.37	0.23	5.07
	Treatments						
	T1 = IPM		4.4(5.3)b	3.2(9.3)b	15(30)b	6(2)b	5462(73)a
	T2 = FP		6.2(6.2)a	18.2(13.5)a	29(35)a	8(3)a	5108(71)b
	LSD(0.05,180 df)		0.28	0.25	1.28	0.12	0.93
	DAT						
D1 = 50 DAT			5.7(5.9)a	6.0(12.5)a	16(12)a	9(3)a	
D2 = 64 DAT			5.0(5.6)ab	11.5(12.8)a	36(13)a	12(3)a	
	D3 = 71 DAT		4.5(5.4)b	13.9(12.6)a	26(13)a	5(2)a	
D4 = 85 DAT			5.6(5.9)a	11.6(9.6)b	10(10)b	2(1)a	
	D5 = PH		5.7(6.0)a	10.6(9.5)b			
	LSD(0.05180 df)		0.44	0.39	0.39	0.20	

At Pantnagar, the trial was evaluated for the management of sheath blight, brown spot and bacterial blight. Adoption of IPM practices effectively reduced the disease progression of sheath blight (243 - 258 AUDPC units) when compared to Farmers practices (420 to 453 AUDPC units). Similar trend was observed with respect to brown spot disease development. At Pantnagar the same IPM practices were not effective against bacterial blight disease. At Kaul, the trial was conducted for the management of leaf blast, neck blast, bacterial blight and sheath blight. The leaf blast AUDPC value of 210 and 182 units were reduced to 146 and 147 units, respectively due to the adoption of IPM practices as against farmer practices. In case of sheath blight disease, adoption of IPM practices reduced the AUDPC units from 120 to 89 in IPM plots and 116 to 87 in FP plots. With respect to bacterial blight there is no significant difference between IPM and Farmer practices (Table 2.7.5).

Table 2.7.5 AUDPC values based on disease severity in Zone II in IPMs trial, Kharif 2022

		AUDPC Values							
Farmers	Treatment	Pantn	agar		Kaul				
		Sheath blight	BS	BB	LB	NB	BB	Sheath blight	
F 1	IPM	243	28	2	146	23	10	89	
	FP	422	96	24	210	27	26	120	
F2	IPM	258	33	2	147	25	23	87	
	FP	420	89	3	182	17	24	116	
F 3	IPM	244	30	2					
	FP	453	98	2					

BS = Brown spot, BB = Bacterial blight, LB = Leaf blast, NB = Neck blast

Across locations, the incidence of dead hearts, leaf folder damaged leaves, BPH and WBPH numbers was significantly low in IPM plots compared to FP plots (**Fig. 2.7.1**).

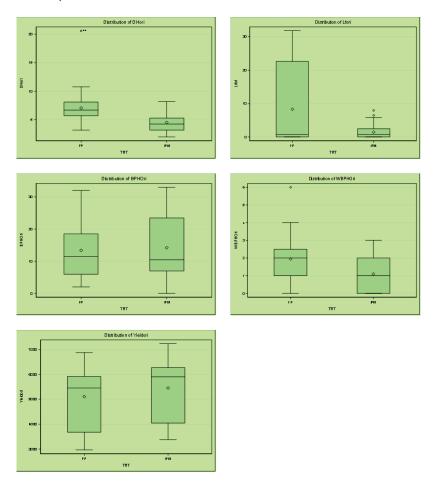


Fig 2.7.1 Incidence of dead hearts, leaf folder damage, BPH, WBPH, and grain yield in IPM and FP plots across locations in Zone II (Northern areas)

Grain yield was significantly high in IPM plots (5462 kg/ha) across locations resulting in higher gross returns and BC ratio (**Table 2.7.6**).

Table 2.7.6 Returns and BC ratio in IPMs trial in Zone II (Northern), Kharif 2022

Location	Бактака	Treatm	Yield	Gross	Cost of	Net returns	BC
Location	Farmers	ents	(q/ ha)	returns (Rs.)	cultivation (Rs.)	(Rs.)	ratio
KUL	F1- Sri. Dalsher Singh	IPM	38.80	149962	41000	108962	3.66
KUL	r 1- 311. Daisher 3ingh	FP	36.48	140995	53900	87095	2.62
ZUI	F2 - Sri Mahender	IPM	38.17	145046	40500	104546	3.58
KUL	rz - Sii wanender	FP	33.76	128288	50150	78138	2.56
LDN	F2 Cri Indorio et Cinab	IPM	70.60	136964	56746	80218	2.41
LDN	F3 - Sri Inderjeet Singh	FP	68.44	132774	60646	72128	2.19
PNT	F4 = Sri Ganesh Bairagi	IPM	59.42	121217	45318	75899	2.67
PINI	r4 – Sii Ganesii Ballagi	FP	55.70	113628	48663	64965	2.33
PNT	F5 = Sri Prabhash Sarkar	IPM	61.46	125378	45418	79960	2.76
FINI	F3 - 311 Flabilasii Salkai	FP	57.88	118075	47423	70652	2.49
PNT	E6 - Cri Vimal Bairagi	IPM	59.26	120890	44418	76472	2.72
PINI	F6 = Sri Vimal Bairagi	FP	54.20	110568	48733	61835	2.27
	IPM		54.62				2.97
	FP		51.08				2.41

Price of Paddy: F1 = Rs.3865/q; F2 = Rs. 3800/q; F3 = Rs. 1940/q; F4, F5 & F6 = Rs.2040/q

Zone III – Eastern areas

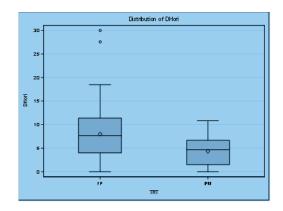
IPMs trial was conducted in four farmer's fields at four locations and details are given below:

S. No	State	Location	Village/district	Farmer Name
1	Odisha	Chiplima	Garmunda village, Sambalpur	Sri. Tarakanta Pradhan
2	West Bengal	Chinsurah	Bele, Radhanagar post, Pandua block, Hooghly district	Sri Narayan Chandra Mondal
3	Uttar Pradesh	Masodha	Kura Keshvpur village, Sadar, Pura Bazar, Ayodhya district	Sri Ram Dheeraj
4	Bihar	Pusa	Ladaura village, Kalyanpur block, Samastipur district	Sri Laxman Singh

The package of practices followed in both IPM and FP plots are given below:

Practices followed in IPMs trial in Zone III (Eastern areas), Kharif 2022

Practices follo	wed in IPMs trial at Chiplima, Kharif 2022			
	IPM practices	Farmers practices		
Area/ Variety	1600 sq.m; Swarna (MTU 7029)	1600 sq.m; Swarna (MTU 7029)		
Nursery	Seed treatment with Trichoderma @ 10g/kg			
Main field	 Transplanted at a spacing of 20 x 15 cm. Applied fipronil 0.3 G @ 10 kg/ acre, 5 days before transplantation Alleyways of 30 cm after every 2 m. Fertilizers (NPK) applied @ 100:50:50. Applied NeemAzal @ 2 ml/ liter water at 40 DAT Applied Rynaxypyr (chlorantraniliprole) 20 SC @ 150 ml /ha at 55 DAT Sprayed CM75 @ 1000 g/ha at 60 DAT for brown spot management Applied Triflumezopyrim 10% SC @ 94 ml/ acre at 65 DAT 	 Fertilizers (NPK) applied 100:50:50 Applied Cartap hydrochloride 4 G @ 20 kg /ha at 20 DAT. Sprayed Cartap hydrochloride 50 SP @ 750 g/ha during transplanting Sprayed Acephate 75 SP @ 1000 g /ha + Fipronil 5 SC @ 1250 ml /ha at 30 DAT Sprayed Isoprothiolane 40 EC @ 1000 ml/ha at 55 DAT Sprayed Pymetrozine 50 WP @ 300 g /ha at 75 DAT 		
Practices follo	wed in IPMs trial at Chinsurah, <i>Kharif</i> 2022			
Area/ variety	0.5 acre; IET 4786 (Satabdi)	0.5 acre; IET 4786 (Satabdi)		
Nursery	Application of 8 kg of 10:26:28 complex Application of mustard cake @ 1.5 kg	Application of mustard cake @ 5 kg		
Main field	 Application of 31 kg 10-26-26 and 28 kg Urea Application of Butachlor + one hand weeding Application of Ferterra (chlorantraniliprole) @ 4 kg/ acre Application of Coragen (chlorantraniliprole) @ 60 ml/ acre Application of carbendazim Installation of pheromone traps @ 6/acre for stem borer mass trapping 	 Application of 30 kg10-26-26; 23 KG MOP; Urea 30 kg Application of Butachlor + one hand weeding Application of Phorate 10 G @ 4.5 kg/ acre Triazophos @ 750 ml/ acre two times Application of Carbendazim 		
Practices follo	wed in IPMs trial at Masodha, <i>Kharif</i> 2022			
Area/	1 acre	1 acre		
Variety	Sambha Mahsuri-Sub 1	Sambha Mahsuri-Sub 1		
Nursery	Seed treatment with Trichoderma@10kg/ha. Presoak the seed in water for 12 hrs. Application of FYM	Only presoak the seed in water for 12 hrs.		
Main field	 Application of 100:50:50:10: N: P: K: ZnSo410 t/ha FYM Transplant seedlings at a spacing of 20 x 15 cm. Alleyways of 30 cm after every 2 m Fertilizer dose 80:40:40:25 N: P: K: ZnSo4. Applied Butachlor 1.5 kg a.i./ ha within one week after transplanting the crop. Installed pheromone traps with 5 mg lure @ 8 traps/ ha for stem borer monitoring. One spray of Cartap hydrochloride 50 WP @ 600 g / ha at 60 DAT 	 Applied 150:40 N: P and 5 t/ha FYM Applied Nominigold @ 100 ml/ acre 		


Practices follo	owed in IPMs trial at Pusa, <i>Kharif</i> 2022	
Area	1 acre	1 acre
Variety	Rajendra Mahsuri	Rajendra Mahsuri
Nursery	Seed treatment with Carbendazim @ 2 g/ kg seed	
Main Field	 Transplanting at 20 x 15 cm spacing Application of RDF Application of Butachlor @ 1.5 kg ai/ ha Installed pheromone traps for YSB @ 3/ acre Application of Bispyribac sodium 20 g ai/ ha at 20 DAT Application of cartap hydrochloride 50 WP @ 600g / ha at 50 DAT 	 Transplanting at 20 x 15 cm spacing Application of RDF Hand weeding at 30 DAT Application of butachlor @ 1.5 kg a.i. / ha after one week of transplanting Hand weeding at 30 DAT Application of Padan (cartap hydrochloride) soluble powder @ 2 kg formulation / ha

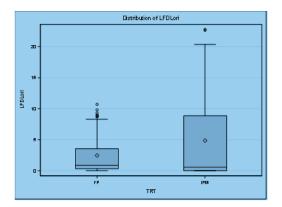

Stem borer, leaf folder, gall midge, whorl maggot, and BPH incidence was recorded in this zone. Stem borer damage was significantly low in IPM plots at Masodha and Pusa (6.0% DH) compared to FP plots at respective locations (**Table 2.7.7**). However, the leaf folder damage was significantly high in IPM plot at Masodha (15.8% LFDL) than in the FP plot (4.1% LFDL) while the damage was low at other locations in both treatments. The incidence of gall midge (<5% SS) and whorl maggot (<5% WMDL) was low in both IPM and FP plots in all the locations. Across locations, dead heart damage was significantly low in IPM plots while the leaf folder damage in FP plots (**Fig. 2.7.2**).

Table 2.7.7 Insect Pest incidence in IPMs trial in Zone III (Eastern), Kharif 2022

	Treatments	%DH/WE	%LFDL	Yield kg/ha	
Location	Farmer				
CHP	F1 = Sri Tarakanta Pradhan	IPM	0.4(0.8)b	0.1(0.8)b	5358(73)a
CHE	FT - SITTATAKANIA FTAUNAN	FP	1.8(1.4)a	1.2(1.3)a	4620(68)b
	LSD (0.05; 28df)		0.19	0.07	3.89
CHN	F2 = Sri Narayan Chandra Mondal	IPM	5.1(2.3)b	0.5(1.0)a	5528(74)a
CHIN	1 2 - Sil Narayan Chandra Mondai	FP	7.1(2.7)a	0.4(1.0)a	4872(70)b
	LSD (0.05; 28df)		0.28	0.12	1.67
MSD	E3 - Sri Dam Dheorai	IPM	6.0(2.5)b	15.8(4.0)a	5588(75)a
เขอบ	F3 = Sri Ram Dheeraj	FP	12.6(3.5)a	4.1(2.1)b	4292(66)b
	LSD (0.05; 28df)		0.34	0.16	4.30
PUS	E4 = Cri Lovman Cinah	IPM	6.0(2.5)b	3.1(1.6)b	5894(77)a
FU3	F4 = Sri Laxman Singh	FP	10.6(3.3)a	4.3(1.9)a	4039(63)b
	LSD (0.05; 28df)		0.11	0.10	7.58
	Treatments				
	IPM		4.3(2.0)b	4.9(1.9)a	5592(75)a
	FP		8.0(2.7)a	2.5(1.5)b	4456(67)b
	LSD (0.05,112)		0.12	0.06	1.85
	DAT				
D1 = 29/45 DAT			7.7(2.6)a	5.3(2.0)a	
D2 = 50/60 DAT			6.5(2.5)a	5.0(2.0)a	
D3 = 71/75 DAT			5.4(2.3)b	2.4(1.4)b	
	D4 = Pre har		5.1(2.3)b	2.1(1.3)b	
	LSD (0.05,112)		0.17	0.08	

Means followed by the same letter in a column are not significantly different; Values in parenthesis are Atkinson's transformed values

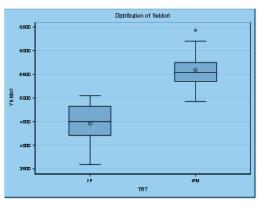


Fig 2.7.2 Incidence of dead hearts, leaf folder damage, and grain yield in IPM and FP plots across locations in Zone III (Eastern areas)

At Chinsurah, significant decrease in weed population by 43.5 and 33.6% and weed dry biomass by 44.6 and 36.8% respectively in IPM implemented fields, resulted in higher growth, yield attributes and grain yield advantage increase by 25.1% of the variety Swarna (**Table 2.7.8**). At Pusa, the weed population at 30 DAT & 60 DAT in IPM plots was lower than farmers practice by 18.1 and 16.7%, respectively. The dry weed biomass also was lower in IPM implemented fields by 18.0 and 13.2%, respectively. The mean grain yield advantage was 25% in IPM adopted plots. Overall, in the eastern zone, yield advantage of 25% was recorded in IPM implemented fields. The weed population was reduced by 38.8% at 30 DAT and 31.1% at 60 DAT in IPM fields. The reduction in weed biomass was 26.8% at 30 DAT and 22.7% at 60 DAT.

Table 2.7.8 Weed population and weed dry mass at Zone III, Kharif 2022

Location	Treatments	Weed popu		Weed dry biomass g/m ²		
		30 DAT	60 DAT	30 DAT	60 DAT	
	IPM	34.4(5.9)	56.0(7.5)	4.4	7.4	
Chinsurah	FP	60.8(7.8)	84.4(9.2)	7.9	11.7	
Chinsulan	Mean	6.8	8.3	6.1	9.5	
	CD (0.05)	0.93	1.01	1.30	1.93	
	IPM	11.1(3.4)	12.3(3.6)	12.9	14.9	
Pusa	FP	13.6(3.8)	14.7(3.9)	15.8	17.2	
PuSa	Mean	3.6	3.7	14.3	16.0	
	CD (0.05)	0.18	0.16	1.34	1.17	

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

Disease incidence was recorded at Chiplima and Masodha in this zone. Adoption of IPM Practices like seed treatment with *Trichoderma* @10g/kg recorded low disease severity (6.3%) at 30 DAT for leaf blast as compared to farmers practices (without the seed treatment & fungicide spray) where in the disease severity was 17.3%. In case of brown spot disease, disease severity was reduced from 15.3 to 12.2% at 60 DAT. Significant reduction in the disease development of leaf blast, neck blast and bacterial blight was recorded at Masodha. Adoption of IPM practices reduced the disease severity of leaf blast and sheath blight to almost nil as compared to farmers practices. With respect to neck blast, bacterial blight, the AUDPC values *viz.*, 287 and 274 were reduced to 172 and 78 respectively (**Table 2.7.9**).

Grain yield was significantly high in IPM plots (5592 kg/ ha) as compared to FP plots (4456 kg/ ha. BC ratio was high in IPM plots (2.13) due to high grain yield resulting in high gross returns and low cost of cultivation compared to FP plots (**Table 2.7.10**).

Table 2.7.9 AUDPC values based on disease severity (%) in Zone III, Kharif 2022

	Chiplin	ma	Masodha				
Treatment	Disease severity (%)	AUDPC values	AUDPC Values				
	Leaf Blast Brown spot		Leaf blast	Neck blast	Bacterial Blight	Sheath blight	
IPM	6.3	12.2	0	172	78	0	
FP	17.3	15.3	245 287 274 131.6				

Table 2.7.10 Returns and BC ratio in IPMs trial in Zone III (Eastern areas), Kharif 2022

	Farmer's Name	Treat	Yield	Gross	Cost of	Net	ВС
Location		ments	(q/ha)	Returns (Rs.)	Cultivation (Rs)	Returns (Rs.)	Ratio
CHP	F1 = Sri Tarakanta Pradhan	IPM	53.58	103945	50470	53475	2.06
CHE	FT - SIT Tarakanta Praunan	FP	46.20	89628	48290	41338	1.86
СПИ	CHN F2 = Sri Narayan Chandra Mondal	IPM	55.28	107243	64205	43038	1.67
CHIN		FP	48.72	94517	65820	28697	1.44
MSD	F3 = Sri Ram Dheeraj	IPM	55.88	108407	51860	56547	2.09
INIOD	F3 = Sil Raili Dileeraj	FP	42.92	83265	32810	50455	2.54
DCA	E4 - Cri Layman Cingh	IPM	58.94	120238	44220	76018	2.72
PSA	F4 = Sri Laxman Singh	FP	40.39	82396	35310	47086	2.33
		IPM	55.92				2.13
		FP	44.56				2.04

Price of paddy at CHP, CHN & MSD= 1940 Rs/ q; at PSA = Rs. 2040/q

<u>Zone IV – North-Eastern areas</u>

Assam – Titabar: In zone IV, IPMs trial was conducted at Sri Ranjan Das field at Dihingia village, Titabar/Jorhat district of Assam. Ranjit sub-1 variety was grown in both IPM and FP plots. Practices followed in IPM and farmers' practices are given in the table.

Low incidence of stem borer, gall midge, leaf folder, and whorl maggot was observed in both IPM and FP plots (**Table 2.7.11**). However, grain yield was relatively high

in IPM plot resulting in high net returns and better BC ratio (1.97) as against FP plot (1.67) (**Table 2.7.12**).

Practices followed in IPMs trial at Titabar in Zone IV (North Esatern), Kharif 2022

	IPM Practices	Farmers Practices
Variety	Ranjit Sub-1	Ranjit Sub-1
Nursery	Seed treatment with Bavistin @ 2 g/ kg seed	
Main field	 Fertilizer application @ 20, 10, 10 kg NPK/ha Applied Pretilachlor within a week of transplanting Applied paddy weeder to lessen weeds Installed pheromone traps @ 12/ ha for stem borer Applied Cartap hydrochloride 50% SC for stem borer management Placed tricho cards for stem borer and leaffolder management Sprayed fresh cowdung solution @200g/L water at mid tillering stage against BLB 	 Fertilizer application @ 60,20,40 kg NPK/ha Manual weeding done two times

Table 2.7.11 Insect pest incidence in IPMs trial at Titabar in Zone IV (North Eastern). Kharif 2022

T ((.	%		% WE	% SS	%LFDL	% WMDL
Treatments	22 DAT	36 DAT	Pre har	50 DAT	22 DAT	57 DAT
IPM	8.1 ± 3.4	3.4 ± 0.6	3.4 ± 0.9	2.3 ± 1.0	4.2 ± 2.6	1.3 ± 0.5
FP	9.8 ± 2.5	8.3 ± 1.5	7.1 ± 0.6	4.6 ± 0.7	3.6 ± 1.5	6.0 ± 0.6

In this Zone, weed population and biomass were reported for 30 DAT only. Significant reduction in weed population (44.3%) and dry weed biomass (40%) at 30 DAT in IPM fields were observed with the Ranjit Sub1 variety (**Table 2.7.12**). Significant improvement in grain yield was noticed with 21.4 % higher in IPM-adopted fields.

Table 2.7.12 Weed parameters, Gross returns and BC ratio in IPMs trial at Titabar, Kharif 2022

Treatments	Weed population no/m ²	Weed dry biomass g/m ² 30 DAT	Yield (Q/Ha)	Gross Returns (Rs.)	Cost of cultivation (Rs.)	Net Returns (Rs.)	BC ratio
IPM	38.2(6.2)	17.9	45.62	88503	45000	43503	1.97
FP	68.6(8.3)	29.8	32.68	63399	38000	25399	1.67
Mean	7.3	23.8					
CD (0.05)	0.79	9.02					

Price of paddy = Rs. 1940/q

Zone V – Central areas

In this zone, IPMs trial was conducted at three farmer's fields each in two locations, *viz.*, Jagdalpur and Raipur and details are given below:

S. No	State	Location	Village/district	Farmer Name
1	Chattisgarh	Jagdalpur	Chokar /Bastar	Sri. Sonu Kashyap
2	Chattisgarh	Jagdalpur	Marlenga/ Bastar	Sri Lachin Kashyap
3	Chattisgarh	Jagdalpur	Chokar/Bastar	Sri Sonsingh Nisad
4	Chattisgarh	Raipur	Bhothali/Arang/Raipur	Sri Bhagwat Yadav
5	Chattisgarh	Raipur	Bhothali/Arang/Raipur	Sri Yogendra Yadav
6	Chattisgarh	Raipur	Bhothali/Arang/Raipur	Sri Vedprakash Yadav

The package of practices followed in IPM and FP plots is given in the table below. The incidence of stem borer, gall midge, leaf folder, whorl maggot, and thrips was reported from all the locations (**Table 2.7.13**).

Practices followed in IPMs trial at Zone V (Central), Kharif 2022

Practices	Practices followed by three farmers at Jagdalpur								
	IPM Practices	Farmers Practices							
Area	1 acre each farmer	1 acre each farmer							
Variety	Swarna (MTU 7029)	Swarna (MTU 7029)							
Nursery	Application of 5 kg N, 3 kg P, 1.2 kg K / 400m²nursery	Application of 2 kg N, 1 kg P / 400m² nursery							
Main field	Application of 50 kg DAP, 50 kg Urea, 10 kg MOP	Application of 50 kg DAP, 100 kg Urea							
	• Seedlings transplanted at spacing of 20/15 cm; Left alleyways of	Applied Carbofuran 3G @ 5kg/acre							
	30 cm after 10 rows.	Hand weeding twice							
	Applied Pyrazosulfuron ethyl 10 wp 500gm./ha+ 1 hand weeding								
	Nitrogen top dressing at 45 DAT								
Practices	followed by three farmers at Raipur								
Area	3 acres (1 acre each farmer)	1 acre							
Variety	• MTU 1001	• MTU 1001							
Nursery	Seed treatment with Carbendazim @ 2 g/ kg seed and seedling treatment with carbofuran Application of 10 kg urea	Application of 10 kg urea							
Main field	Application of 50 kg DAP, 15 kg MOP & 50 kg Urea	Application of 50 kg DAP, 50 kg Urea / acre							
	Alley ways of 30 cm after every 2 m	Random planting							
	Early stage weed control (Sathi - pyrazosulfuron ethyl & Nominee Gold – bispyriback sodium) Regular monitoring	Application of Profenophos + Cypermethrin Spraying of Propiconazole 25 EC @ 1ml/ liter							
	Installation of pheromone traps	•							
	Need based application of cartap hydrochloride and hexaconazole								

Table 2.7.13 Insect Pest incidence in IPMs trial in Zone V (Central), Kharif 2022

Location	Farmer Name	Treat	%DH/WE	% SS	% LFDL	% WMDL	%THDL	Yield kg/ha
Location	rainiei Naille							
JDP	F1 = Sri Sonu Kashyap	IPM	3.7(1.9)b	11.3(3.4)b	3.5(2.0)b	7.3(2.7)a	8.2(2.9)b	4444(67)a
FP		9.8(3.1)a	37.2(6.1)a	8.4(2.9)a	7.7(2.8)a	12.6(3.6)a	3666(61)a	
	LSD (0.05, 44df)		0.32	0.39	0.18	0.26	0.21	6.39
JDP F2 = Sri Lachin Kashya	F2 = Sri Lachin Kashyap	IPM	3.8(1.9)b	10.3(3.0)b	3.2(1.8)b	5.0(2.2)b	6.8(2.7)b	4304(66)a
001	, ,	FP	17.3(4.0)a	27.5(5.2)a	7.4(2.8)a	11.2(3.4)a	14.3(3.8)a	3380(58)a
	LSD (0.05,44 df)		0.38	0.46	0.18	0.29	0.25	7.73
JDP	F3 = Sri Sonsingh Nisad	IPM	6.1(2.4)b	9.9(3.1)b	2.9(1.8)b	3.4(1.9)b	2.2(1.6)b	3847(62)a
3D1	1 5 – Sit Soffsifigit Nisau	FP	16.9(4.0)a	15.3(3.9)a	3.7(2.0)a	5.5(2.4)a	8.9(3.0)a	3432(58)a
	LSD (0.05,44 df)		0.38	0.45	0.17	0.24	0.21	6.17
RPR	F4 = Sri Bhagwat Yadav	IPM	6.1(2.3)b		1.7(1.4)b			7108(84)a
KFK	F4 – Sii Bilaywat Tauav	FP	20.0(4.4)a		6.6(2.6)a			6328(79)a
	LSD (0.05,44 df)	•	0.56		0.28			5.93
RPR	EE - Cri Vogondra Vodov	IPM	8.4(2.8)b		1.8(1.5)b			
RPR	F5 = Sri Yogendra Yadav	FP	20.0(4.3)a		6.6(2.6)a			
	LSD (0.05,44 df)	•	0.47		0.22			
DDD	F6 = Sri Vedprakash	IPM	11.2(3.3)b		1.0(1.2)b			
RPR	Yadav	FP	20.1(4.4)a		6.6(2.6)a			
	LSD (0.05,44 df)	•	0.46		0.23			
	Treatments							
	T1 = IPM		6.5(2.4)b	10.5(3.2)b	2.3(1.6)b	5.3(2.3)b	5.7(2.4)b	5653(74)a
	T2 = FP		17.4(4.0)a	26.7(5.0)a	6.6(2.6)a	8.1(2.9)a	11.9(3.5)a	4910(69)b
	LSD (0.05,264)		0.17	0.24	0.08	0.15	0.12	1.94
	DAT							
D1 = 30 DAT			5.2(2.1)d			3.6(1.9)b		
D2 = 45 DAT			9.0(2.9)c	14.7(3.7)b	3.4(1.9)c	7.8(2.8)a	8.1(2.8)b	
D3 = 60 DAT			10.5(3.1)c	21.3(4.5)a	5.5(2.3)a	8.6(3.0)a	9.7(3.1)a	
D4 =75 DAT			12.5(3.4)b	22.8(4.7)a	4.8(2.2)a	- (/	8.6(2.9)b	
D5 = 90 DAT			14.6(3.6)b	15.5(3.6)b	4.2(2.0)b		- (- / -	
D6 = Pre har			19.9(4.3)a	212(212)2	()**			
	LSD (0.05,264 df)		0.30	0.34	0.12	0.18	0.15	
Maana fallauu	ad by the same letter in a column	:						

Means followed by the same letter in a column are not significantly different; Values in parenthesis are Atkinson's transformed values

Stem borer incidence was significantly high in all the farmers' fields in FP plots compared to IPM plots and the mean of all the locations indicated 17.4% damage in farmer practices as compared to IPM plots (6.5%) (Fig. 2.7.3). The incidence of gall midge, whorl maggot and thrips was observed in three farmers' fields at Jagdalpur alone and not at Raipur. Gall midge incidence was very high in FP plots in all the three farmers' fields (15.3 – 37.2% SS) as against IPM plots (9.9-11.3% SS). Thrips incidence was significantly high in farmer practices plots (11.9% THDL) compared to IPM plots (5.7% THDL) across locations (Fig. 2.7.3).

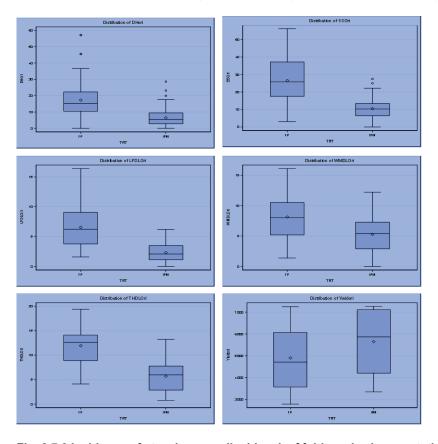


Fig. 2.7.3 Incidence of stem borer, gall midge, leaf folder, whorl maggot, thrips damage and grain yield in IPM and FP plots across locations in Zone V (Central areas)

In this Zone, weed parameters were recorded only at Raipur. In IPM plots, the weed population was lower than farmers practice by 22.5 & 22.7% at 30 and 60 DAT, respectively. The dry weed biomass also was lower in IPM implemented fields by 15.7 and 18.2%, respectively (**Table 2.7.14**). The mean grain yield advantage was 10.97% in IPM adopted plots.

Table 2.7.14 Weed population and weed dry mass at Raipur in Zone V, Kharif 2022

Trootmonto	Weed populat	ion (no/m²)	Weed dry bio	mass (g/m²)	
Treatments	30 DAT	60 DAT	30 DAT	60 DAT	
IPM	13.28(3.69)	23.90(4.93)	8.78	35.99	
FP	17.14(4.16)	30.92(5.59)	10.41	43.98	
Mean	3.93	5.26	9.59	39.99	
CD (0.05)	0.24	0.29	0.51	3.27	

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

Under Central zone, disease incidence was recorded only at Jagdalpur, wherein IPM practices and Farmers practices were compared for the management of leaf blast, neck blast and sheath blight. In general, the disease progress was significantly low in the IPM adopted field compared to the farmers practices. With respect to leaf blast, the AUDPC values ranged from 0 to 141 in the IPM adopted field, whereas the values varied from 84 to 426 in the farmers practices. Similar trend was also observed in case of neck blast wherein the AUDPC values ranged from 0 to 135 as against 135 to 411 in farmers adopted practices. Similarly, sheath blight disease severity also reduced significantly wherein the AUDPC values reduced from 225 to 42, 444 to 279 and 363 to 219 (**Table 2.7.15**).

Table 2.7.15 AUDPC values at Jagdalpur in Zone V in IPMs trial, Kharif 2022

Location	Treatment	AUDPC Values				
Location	rrealment	Leaf Blast	Neck blast	Sheath blight		
Location 1	IPM	0	48	42		
	FP	173	159	225		
Location 0	IPM	141	0	279		
Location 2	FP	426	411	444		
Location 3	IPM	0	135	219		
	FP	84	213	363		

Grain yield was significantly high in IPM plots as compared to FP plots resulting in higher gross returns and better BC ratio (**Table 2.7.16**).

Table 2.7.16 Returns and BC ratio in IPMs trial at Zone V (Central), kharif 2022

Location	Name of the Farmer	Treat ments	Yield (q/ha)	Gross Returns (Rs.)	Cost of Cultivation (Rs.)	Net Returns (Rs.)	BC ratio
JDP	F1 = Sri Sonu Kashyap	IPM	44.44	93324	20750	72574	4.50
JDP	rı – Sii Soliu Kasılyap	FP	36.66	76986	26750	50236	2.88
IDD	E2 = Cri Lashbin Kashyan	IPM	43.04	90384	20750	69634	4.36
JDP	F2 = Sri Lachhin Kashyap	FP	33.8	70980	27500	43480	2.58
IDD		IPM	38.47	80787	20750	60037	3.89
JDP	F3 = Sri Sonsingh Nisad	FP	34.32	72072	27500	44572	2.62
RPR		IPM	71.08	145003	25450	119553	5.70
KPK	F4 = Sri Bhagwat Prasad	FP	63.28	129091	30075	99016	4.29
	•	IPM	49.26				4.61
		FP	42.02				3.09

Price of Paddy = F1, F2 & F3 = Rs. 2100/g; F4 = Rs. 2040/g

Zone VI – Western areas

IPMs trial was conducted in nine farmers' fields representing 3 locations in this zone as given under:

S. No	State	Location	Village/district	Farmer Name
1	Maharashtra	Karjat	Vadap village	F1- Sri Kailash Dalvi
2	Maharashtra	Karjat	Gourkamat/Raigad	F2 - Sri Ashok Thamane
3	Maharashtra	Karjat	Salokh/Raigad	F3- Sri Ashok Mokashi
4	Gujarat	Navasari	Eru,Abrama, Hanspur/Navsari	F4 = Sri Eru
5	Gujarat	Nawagam	Nawagam/ Kheda	F5 - Sri Shaileshbhai Bhulabhai Patel
6	Gujarat	Nawagam	Kathwada/ Kheda	F6 - Sri Vipulbhai Jayantibhai Bharwad
7	Gujarat	Nawagam	Kathwada/ Kheda	F7 - Sri Rakeshbhai Ramsangbhai Chunara

The package of practices followed are given in the following table.

Practices for	ollowed by three farmers in IPMs trial at Karjat, Kharif 2022	
	IPM practices	Farmers practices
Area	1 acre	1 acre
Varieties	F1- Sri Kailash Dalvi - Karjat 7 F2 - Sri Ashok Thamane - Karjat 7 F3- Sri Ashok Mokashi – Karjat 7	
Nursery	Seed treatment with carbendazim @ 10 g/ 10 kg seed Raised bed 3x1m treated with rice husk (hull) ash @3kg/bed	Land burned with waste materials
Main field	 Deep ploughing Application of FYM 4 T, Suphala 215 Kg, Urea 87 Kg 2-3 seedlings transplanted at a spacing 20 x15 cm. Alleyways of 40cm left after every 10 rows Bispyribasodium 250ml/ha (Nomini gold). Pheromone traps @ 8 / acre Use of bird perches in the field Use Vaibhav sickle for harvesting Application of Cartap hydrochloride 18 kg/ha (one application) 	 Deep ploughing Application of FYM 2 T, Urea 180 kg, Suphala 75 kg 4-5 seedlings transplanted randomly Hand weeding once Phorate 10 kg/ha (two applications)
	followed by three farmers in IPMs trial at Nawagam, Kharif 20	
Area	1250 sq.m	1250 sq.m
Variety	Gurjari	Gurjari
Farmers	F5 - Sri Shaileshbhai Bhulabhai Patel F6 - Sri Vipulbhai Jayantibhai Bharwad F7 - Sri Rakeshbhai Ramsangbhai Chunara	
Nursery	Seed treatment with Trichoderma @ 10 g/kg seed Applied Bispyribacsodium 10% SC @ 0.4ml/L	Application of Chlorantraniliprole 0.4 GR @ 10 kg/ha
Main field	 Application of 80 kg urea, 54 kg DAP and 20 kg Zinc sulphate 2-3 seedlings transplanted at a spacing 20 x15 cm. Alleyways of 40cm left after every 10 rows Bispyribasodium 10% SC @ 0.4 ml/ liter water (Nomini gold). Applied Neemazal @ 3 ml/ liter waterUse of bird perches in the field Sprayed Chlorantraniliprole 18.5 SC @ 150 ml/ ha Applied Carbendazim + mancozeb @ 2-2.5 g/lit Applied Triflumezopyrim 10% SC @ 94 ml/ acre 	 Application of 160 kg urea, 160 kg DAP and 20 kg Zinc sulphate 4-5 seedlings transplanted randomly Applied Pendimethalin 30% EC @ 50 ml/ 10 liter water Hand weeding Applied Bispyribasodium 10% SC @ 0.4 ml/ liter water (Nomini gold). Applied Cartap hydrochloride 4 G @ 20 kg/ha

The incidence of stem borer, leaf folder, and WBPH was observed in this zone. The overall pest incidence was very low in both treatments across locations in this zone. However, the damage was significantly lower in IPM compared to FP plots (**Table 2.7.17and Fig. 2.7.4**).

Table 2.7.17 Insect Pest incidence in IPMs trial in Zone VI (Western), Kharif 2022

Table 2:1:17 model tot modelies in it me that in Zone vi (vvesterii); valarii zozz							
	Treatments	•	%DH/WE	% LFDL	WBPH	Yield kg/ha	
I/ IT F1 Cvi Veden	F1- Sri Vadap	IPM	3.4(1.8)b	1.0(1.2)b		3298(58)a	
KJT	F1- SII Vauap	FP	5.3(2.2)a	1.5(1.4)a		2700(52)b	
	LSD (0.05, 36df)		0.13	0.16		1.88	
KJT	F2 - Sri Gourkamat	IPM	2.7(1.6)b	1.9(1.5)a		3348(58)a	
NJI	F2 - Sri Gourkamat	FP	3.6(1.9)a	2.0(1.5)a		2748(52)b	
	LSD (0.05, 36df)		0.21	0.25		1.11	
KJT	E2 Cri Calakh	IPM	3.1(1.8)b	2.6(1.7)a		3100(56)a	
NJI	F3- Sri Salokh	FP	4.4(2.1)a	1.7(1.5)b		2548(51)b	

ICAR-IIRR Annual Progress Report 2022, Vol. 2 – Entomology

	LSD (0.05, 36df)		0.22	2.00		1.36
NVS	F4- Sri Bhanubhai Patel	IPM	3.2(1.7)b	2.6(1.7)b		4792(69)a
INVO	F4- Sii Bilaliubilai Fatel	FP	5.8(2.4)a	5.1(2.3)a		3656(60)b
	LSD (0.05, 36df)		0.47	0.45		4.73
NWG	F5 - Sri Shaileshbhai	IPM	4.4(2.1)b	2.6(1.7)b	14(4)b	5158(72)a
NVVG	Bhulabhai Patel	FP	6.3(2.5)a	4.2(2.1)a	23(5)a	4154(64)a
	LSD (0.05, 36df)		0.13	0.18	0.39	9.27
NWG	F6 - Sri Vipulbhai	IPM	5.0(2.3)b	3.5(1.9)b	16(4)b	4934(70)a
NVVG	Jayantibhai Bharwad	FP	6.8(2.6)a	5.2(2.2)a	23(3)a	4297(65)a
	LSD (0.05, 36df)		0.13	0.24	0.24	8.75
NWG	F7 - Sri Rakeshbhai	IPM	5.5(2.4)b	2.9(1.8)b	17(4)b	4920(70)a
INVVG	Ramsangbhai Chunara	FP	6.7(2.6)a	4.3(2.1)a	20(4)a	4015(63)b
	LSD (0.05, 36df)		0.13	0.12	0.22	2.69
	Treatments					
	T1 = IPM		3.9(7.0)b	8.4(6.2)b	16(9)b	4221(45)a
	T2 = FP		5.6(8.1)a	11.9(7.1)a	22(10)a	3445(41)b
	LSD (0.05,252)		0.21	0.27	0.36	0.49
	DAT					
	D1 = 29 DAT		6.6(5.7)d	2.0(5.7)c	5(2)b	
D2 = 36 DAT			10.5(7.1)c			
D3 = 50 DAT			18.7(9.3)a	2.5(6.3)b	29(5)a	
D4 = 71 DAT			11.4(7.9)b	4.3(7.9)a	37(2)b	
D5 = 85 DAT			10.5(7.7)b			
	LSD (0.05,252)		0.33	0.33	0.23	

Means followed by the same letter in a column are not significantly different; Values in parenthesis are Atkinson's transformed values

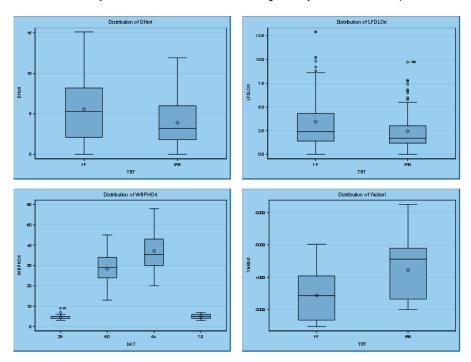


Figure 2.7.4 Incidence of dead hearts, leaf folder damage, WBPH, and grain yield in IPM and FP plots across locations in Zone VI (Western areas)

Weed parameters were recorded from three locations, Karjat, Navsari and Nawagam. At Karjat, the weed population in IPM plots was lower than farmers practice by 18.8 at 30 DAT. The dry weed biomass was also lower in IPM implemented fields by 100%. The mean grain yield advantage was 17.1 % in IPM adopted plots. Significant reduction in weed population (51.5 and 39.5%) and dry weed biomass (48.3 and 35.4%) at 30 and 60 DAT in IPM implemented fields was experienced with variety GNR3 at Navsari. Significant improvement in grain yield

advantage was noticed with 5.2% higher in IPM adopted fields. At Nawagam, significant reduction in weed population (62.4 and 54.8%) and dry weed biomass (68.7 and 59.6%) was observed at 30 and 60 DAT in IPM implemented fields with Gurjari variety (**Table 2.7.18**). Significant grain yield advantage noticed with 16.8% higher in IPM adopted fields.

Overall, in this Western Zone, adoption of IPM package resulted in yield advantage of 21.0% over the farmers practice. The weed population in IPM implemented fields was lower by 63.3% at 30 DAT and 56.1% at 60 DAT. The reduction in weed dry biomass was 69.7% at 30 DAT and 60.0 at 60 DAT.

Table 2.7.18 Weed population and weed dry mass in Zone VI in IPMs, Kharif 2022

Location	Treatments	Weed popu	ulation (no/m²)	Weed dry bio	mass (g/m²)
Location	Treatments	30 DAT	60 DAT	30 DAT	60 DAT
	IPM	6.6(2.6)	15.6(4.0)	9.2	20.5
Navsari	FP	13.6(3.7)	25.8(5.1)	17.7	31.7
INAVSAII	Mean	3.2	4.6	13.4	26.1
	CD (0.05)	0.54	0.25	4.41	2.79
	IPM	102.2(10)	79.64(8.84)	48.9	39.9
Nowagam	FP	271.5(16.2)	176.34(13.08)	156.4	98.9
Nawagam	Mean	13.1	11.0	102.6	69.4
	CD (0.05)	2.16	1.40	33.52	15.67
	IPM	2.6(1.7)		0.0	
Variet	FP	3.2(1.9)		3.1	
Karjat	Mean	1.8		1.6	
	CD (0.05)	0.13		0.69	

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

Under this zone, disease incidence was reported only from Nawagam from three different locations for the management of sheath rot and grain discolouration. The AUDPC value was reduced due to the adoption of IPM practices (IPM = 308 - 311; FP = 349 - 366). Similarly, disease progress was low in case of grain discoloration (AUDPC units in IPM = 119 - 128; FP = 145 - 153) in the IPM practices adopted field (**Table 2.7.19**).

Table 2.7.19 AUDPC values based on disease severity (%) at Nawagam in IPMs, Kharif 2022

Treatment		Nawagam										
Treatment		AUDPC Values										
Location 1	Sheath rot	Sheath rot GD Location 2 Sheath rot GD Location 3 Sheath rot GD										
IPM	311	122	IPM	308	119	IPM	322	128				
FP	349	146	FP	346	153	FP	366	145				

GD = Glume Discolouration

IPM practices have resulted in grain yield that was significantly high (4221 kg/ha) compared to FP plots (3445 kg/ha). The higher gross returns and low cost of cultivation in IPM plots led to a high BC ratio across the locations (**Table 2.7.20**).

Table 2.7.20 Returns and BC ratio in IPMs trial at Zone VI (Western), Kharif 2022

Location	Farmers	Treat ments	Yield (q/ ha)	Gross returns (Rs.)	Cost of cultivation (Rs.)	Net returns (Rs.)	BC ratio
I/ IT	F4 O:: V- d-:	IPM	32.98	89046	58637	30409	1.52
KJT	F1- Sri Vadap	FP	27.00	72900	62200	10700	1.17
I/ IT	F2 - Sri Gourkamat	IPM	33.48	90396	59337	31059	1.52
KJT	F2 - Sii Gourkamat	FP	27.48	74196	63200	10996	1.17
KJT	E2 Cri Calakh	IPM	31.00	83700	57337	26363	1.46
NJI	F3- Sri Salokh	FP	25.48	68796	60200	8596	1.14
NVS	F4- Sri Bhanubhai Patel	IPM	47.92	81464	39000	42464	2.09
11173	F4- 311 Bilanubilai Falei	FP	36.56	62152	24000	38152	2.59
NWG	F5 - Sri Shaileshbhai Bhulabhai	IPM	51.58	95423	63488	31935	1.50
INVVG	Patel	FP	41.54	76849	52928	23921	1.45
NWG	F6 - Sri Vipulbhai Jayantibhai	IPM	49.34	91279	63728	27551	1.43
INVVG	Bharwad	FP	42.97	79495	46608	32887	1.71
NWG	F7 - Sri Rakeshbhai	IPM	49.20	91020	63368	27652	1.44
INVVG	Ramsangbhai Chunara	FP	40.15	74278	52528	21750	1.41
		IPM	42.21				1.57
		FP	34.45				1.52

Price of Paddy = F1, F2, F3 = Rs. 2700/q; F4 = Rs. 1700/q; F5, F6 & F7 = Rs. 1850/q

Zone VII - Southern areas

IPMs trial was conducted at 10 farmers' fields in 5 locations in this zone and the details of farmers and villages are given below:

	Zone VII									
S. No	State	Location	Village/district	Farmer Name						
1	Karnataka	Mandya	Ganadalu/ Mandya	F1 – Sri Mahadevu						
2	Karnataka	Mandya	Ganadalu/ Mandya	F2 - Sri Jayaramu						
3	Karnataka	Mandya	Mall/ Mandya	F3 – Sri Puttaswamy						
4	Tamil Nadu	Aduthurai	Melamaruthuvakudi/Thanjavur	F4- Sri K Marimuthu						
5	Tamil Nadu	Aduthurai	Thiruneelakudi/Thanjavur	F5 - Sri Manoharan						
6	Tamil Nadu	Aduthurai	Aduthurai/Thanjavur	F6- Sri Rajavel						
7	Karnataka	Gangavathi	Sharanabasaveshwar camp/ Koppal	F7 – Sri Surya Rao						
8	Telangana	Rajendranagar	Peddashapur/ Ranga Reddy	F8 – Sri Krishna Patel						
9	Telangana	Rajendranagar	Peddashapur/ Ranga Reddy	F9 – Sri Eshwariah						
10	Andhra Pradesh	Maruteru	Vadali/Penukonda mandal	F10 – Sri T Jogeswara Rao						
11	Andhra Pradesh	Maruteru	Vadali/Penukonda mandal	F11 – Sri N Srinivasa Rao						

The IPM practices followed by various farmers is given below:

Practices followed in IPMs trial at Aduthurai, Kharif 2022

	IPM practices	Farmers practices		
Area/ variety	1 ha; CR 1009, ADT 54, ADT 51	1 ha; CR 1009, ADT 54, ADT 51		
Nursery	Seed treatment with carbendazim @ 2g / kg seed			
Main field	 Transplanting the seedlings at a spacing of 20 x 15 cm. Leaving alleyways of 30 cm after every 2 m or 10 rows. Fertilizers applied as per local recommended fertilizer dose. Application of Butachlor 1.5 kg a.i./ ha within one week after transplanting the crop. At 15 DAT, installed pheromone traps with 5 mg lure @ 8 traps/ha for stem borer monitoring One spray of Cartap hydrochloride 50 WP @ 600 g /ha at 60 DAT Application of Propiconazole 	 Five rounds of insecticides followed due to gall midge, stem borer, leaf folder and BPH incidence. Thiamethoxam 100 g/ha at 25 DAT for thrips Chlorantraniliprole 18.5 SC @ 150 ml/ha at 45 DAT for stem borer and leaf folder Profenophos 20 EC @ 1000ml/ha at 70 DAT for stem borer and leaf folder Applied Cartap hydrochloride 10kg/ha Sprayed Copper oxy chloride, Mancozeb+carbendazim (saaf), Propiconozole 		

Area	1 acre	1 acre
Variety	BPT 5204	BPT 5204
Main field	 Seed treatment with Carbandezim @ 2g / kg seed Fertilizer application @ 60:30:30 kg NPK /ha Forming alleyways of 30 cm Grown marigold on bunds Installation of pheromone traps @ 8 traps/ ha Sprayed Chlorpyriphos 20 EC @ 2ml / liter at 45 DAT Followed alternate wetting and dring Sprayed Tilt (Propiconazole) @ 1ml / liter water Sprayed Metarhizium @ 2 g/ liter water at 60 DAT Application of Triflumezopyrim @ 94 ml / acre at 60 	 Fertilizer application @ 120:60:60 kg NPK /ha Application of weedicide, Butachlor @ 400 ml/ac Application of Ferterra @ 4 kg at 25 DAT Sprayed Chlorpyriphos 20 EC @ 2ml / liter at 50 DAT Application of Triflumezopyrim @ 94 ml / acre at 60 DAT Sprayed Merger (Tricyclazole + Mancozeb) @ 2 g / liter water at 45 DAT Sprayed Tilt (Propiconazole) @ 1ml / liter water at 65 DAT Sprayed Nativo (Trifloxystrobin + Tebiconazole) at 85
Dractices fol	DAT Howed in IPMs trial at Mandya, <i>Kharif</i> 2022	– 90 DAT
	u, Ganadalu village, Mandya district, Karnataka	
Area	1 acre	1 acre
Variety	Sowbhagya	Sowbhagya
Nursery	Seed treatment with Carbandezim @ 2g / kg seed	
Main field	 Urea 45 kg/ acre, SSP 125 kg/ acre, MOP 35 kg/ acre, Top dressing 45 kg urea Transplanting with 20 x 15cm spacing Forming alleyways of 30 cm Londax power @ 4kg/ac - herbicide at 3 DAT + one hand weeding Installation of pheromone traps 5 mg lure for monitoring stem borer @ 8 traps / ha Application of Cartap hydrochloride 50 WP @ 240 g/ acre at 60 DAT Zinc sulphate @ 8 kg/ acre and Tricyclazole 75WP @ 0.6g/lit Followed alternate wetting and drying 	 Urea 50 kg/ acre, 10:26:26 complex fertilizer 100 kg/ ac, MOP 25 kg/ acre Random transplanting Applied Butachlore @ 1.2lit/ace @ 400 ml/ acre (Refit) + two hand weedings Carbofuran 4G application @ 8 kg/ acre Chlorpyriphos 20 EC@ 2ml/l Propiconazole 25 EC @ 1 ml/ litre Dinotefuran 20 SG @ 250 g/ ha at 70 DAT
Sri Jayaramu,	Ganadalu village, Mandya district, Karnataka	
Area	1 acre	1 acre
Variety	Jyothi	Jyothi
Nursery	Seed treatment with Carbandezim @ 2g / kg seed	
Main field	 Urea 45 kg/ acre, SSP 125 kg/ acre, MOP 35 kg/ acre, Top dressing 45 kg urea Transplanting with 20 x 15cm spacing Forming alleyways of 30 cm Londax power @ 4kg/ac - herbicide at 3 DAT + one hand weeding Installation of pheromone traps for monitoring stem borer @ 8 traps / ha Application of Fipronil 0.3G @ 10 kg/acre Sprayed Tricyclazole 75 WP @ 0.6g/ liter water Zinc sulphate @ 8 kg/ acre Alternate wetting and drying 	 Randomly transplanted Londax power @ 4 kg/ acre + 2 hand weedings Chlorantraniliprole 0.4 GR @ 4kgl/acre Cartap hydrochloride 50SP @ 2gm/l (400g/ acre) Azoxystrobin + Difenconazole (amistar top)@1ml/lit Imidacloprid17.8SL@0.3ml/lit Continuous irrigation
Sri Puttaswar	my, Mallanayakanakatte village, Mandya district Karnatak	ia
Area	1 acre	1 acre
Variety	Jaya	Jaya
Nursery	Seed treatment with Carbandezim @ 2g / kg seed	
Main field	 Urea 45 kg/ acre, SSP 125 kg/ acre, MOP 35 kg/ acre, Top dressing 45 kg urea Transplanting with 20 x 15cm spacing Forming alleyways of 30 cm Londax power @ 4kg/ac - herbicide at 3 DAT + one hand weeding 	Randomly transplanted Urea 50 kg/ acre, 10:26:26 complex fertilizer 100 kg/ ac, MOP 25 kg/ acre Pretilachlor 50EC (Refit) @400ml/acre + 2 hand weedings Chlorantraniliprole 18.5SC (Coragen) @ 60ml/acre Fipronil 0.3G@10kg/acre

	 Installation of pheromone traps for monitoring stem borer @ 8 traps / ha Application of Fipronil 5SC@1.5ml/lit Sprayed Tricyclazole 75 WP @ 0.6g/ liter water Zinc sulphate @ 8 kg/ acre Alternate wetting and drying 	Tebuconozole @0.4gm/lit Buprofezin25EC (Applaud)@1.4ml/lit Continuous irrigation
Practices fo	llowed in IPMs trial at Rajendranagar, Kharif 2022	
Variety	BPT 5204	BPT 5204
Nursery	 Applied 4.4 kg urea, 6.25 kg SSP and 1.75 kg MOP Applied Carbofuran 3G in nursery @800g/nursery sufficient to 1 acre 	Application of 6 kg urea, 8 kg SSP and 3 kg MOP
Main field	 Applied 80 kg N,90 kg P and 15 kg K Adopted alleyways Applied weedicide Cyhalofop butyl + Penoxulam (Vivaya) @ 1000ml/acre + one hand weeding Applied Chlorantraniliprole @ 0.3 ml/ liter water (60ml/ acre) at panicle initiation stage Applied fungicide Picoxystrobin + Trycyclazole (Galelio Sensa) @400ml/acre 	 Application of 120 kg N, 80 kg P and 20 kg K. Applied weedicide: Bensulfuron Methyl + Pretilachlor (Londax Power T) @ 4kg/acre at 3-5 DAT Sprayed Chlorpyriphos @ 2.5 ml/ liter water or Sprayed Acephate 75SP @ 300g/acre in main field at tillering Hand weeding Sprayed Cartap hydrochloride 50SP @ 2g/l (400g/acre) Sprayed Tricyclazole @120g/acre or Sprayed Tebuconazole + trixystrobin (Nativo) @ 80g/acre

Incidence of stem borer, gall midge, leaf folder, caseworm, and BPH was observed in both IPM and FP plots at different locations (**Table 2.7.21**). At Aduthurai, stem borer incidence was significantly high in all three farmers' practices (35.3 – 46.1% DH) than in IPM plots (5.4 – 15.6% DH). Similarly, gall midge incidence was also initially high in IPM plots but reduced after the IPM interventions. The mean gall midge damage was significantly low in IPM plots (8.0% SS) as compared to FP plots (20.2% SS) (**Fig. 2.7.5**). Leaf folder incidence was low at Mandya and Gangavathi but was significantly high at Aduthurai in FP plots (21.4 – 23.8% LFDL) than in IPM plots. A low incidence of caseworm was recorded in both IPM and FP plots at Mandya. BPH incidence was also low across locations and treatments. Overall, in this zone, IPM plots showed significantly low stem borer, gall midge, and leaf folder damage as compared to FP plots (**Fig. 2.7.6**).

Table 2.7.21 Insect Pest incidence in IPMs trial in Zone VII (Southern), Kharif 2022

Location	Farmer Name	Treatments	%DH/WE	% SS	% LFDL	%CWDL	BPH	Yield kg/ha
MND	F1 = Sri Mahadevu	IPM	5.2(2.2)b		1.2(1.2)b	0.8(1.1)b	3(2)b	6572(81)a
IVIND	FT - SIT Wallauevu	FP	13.7(3.5)a		3.1(1.8)a	2.1(1.6)a	11(4)a	5852(77)a
	LSD (0.05,28)		0.57		0.21	0.21	0.41	8.80
MND	E2 - Cri Joyoromu	IPM	4.9(2.1)b		2.0(1.5)b	1.6(1.4)b	3(2)b	6292(79)a
IVIIND	F2 = Sri Jayaramu	FP	13.8(3.6)a		5.8(2.4)a	4.2(2.1)a	10(3)a	5380(73)a
	LSD (0.05,28)		0.61		0.22	0.21	0.30	14.76
MND	F2 = Cri Duttaguamu	IPM	5.7(2.3)b		2.8(1.8)b	1.2(1.2)b	2(2)b	5900(77)a
IVIND	F3 = Sri Puttaswamy	FP	15.7(3.9)a		6.2(2.6)a	4.2(2.1)a	6(3)a	4836(69)a
	LSD (0.05,28)		0.64		0.35	0.31	0.36	3.58
ADT	F4 = Sri Marimuthu	IPM	8.4(2.3)b	10.9(3.0)b	6.4(2.1)b		2(1)b	6280(79)a
ADT		FP	46.1(6.6)a	20.3(4.4)a	21.4(4.1)a		9(3)a	5174(72)b
	LSD (0.05,28)		1.21	0.76	0.41		0.54	1.04
ADT	FF - Cri Manaharan	IPM	15.6(6.3)b	7.2(2.5)b	6.8(2.3)b		1(1)b	
ADT	F5 = Sri Manoharan	FP	35.3(5.6)a	23.1(4.5)a	22.1(4.1)a		12(4)a	
	LSD (0.05,28)		1.21	0.90	0.57		0.32	
ADT	F6 = Sri Rajavel	IPM	5.4(2.1)b	5.9(2.3)b	7.0(2.3)b		5(2)b	_

ICAR-IIRR Annual Progress Report 2022, Vol. 2 – Entomology

		FP	43.6(6.2)a	17.2(3.9)a	23.8(4.2)a		18(4)a	
	LSD (0.05,28)		1.41	0.86	0.62		0.72	
GNV F7	F7 - Cri Curvo Doo	IPM	1.0(1.2)b		1.7(1.5)a		9(5)a	6057(77)a
GIVV	F7 = Sri Surya Rao	FP	3.2(1.9)a		0.6(1.0)b		21(3)b	5968(78)a
	LSD (0.05,28)		0.24		0.16		0.36	2.42
RNR	F8 = Sri Krishna Patel	IPM	0.5(0.9)b					8738(93)a
KINK	ro - Sii Kiisiina Palei	FP	2.0(1.2)a					8369(91)a
	LSD (0.05,28)		0.08					5.89
RNR	F9 = Sri Eshwaraiah	IPM	0.9(1.1)b					8307(91)a
KINK	r9 - SII ESIIWaraian	FP	2.7(1.4)a					7489(86)b
	LSD (0.05,28)		0.25					4.17
MTH	F10 = Sri T Jogeswara	IPM	2.7(1.6)a	1.1(1.2)a	0.5(1.0)b		41(6)b	5625(75)b
MTU	Rao	FP	4.4(2.0)a	1.4(1.3)a	0.8(1.1)a		80(9)a	6190(79)a
	LSD (0.05,28)		0.36	0.37	0.12		0.50	3.47
	F11 = Sri N Srinivasa	IPM	2.1(1.5)b	1.0(1.1)a	0.4(0.9)a		77(9)a	5625(75)a
MTU	Rao	FP	4.2(2.0)a	1.9(1.5)a	0.4(0.9)a		70(9)a	6000(77)a
	LSD (0.05,28)		0.33	0.32	0.13		0.44	4.26
	Treatments							
	T1 = IPM		5.0(2.9)b	10.5(2.0)b	3.2(3.7)b	1.4(1.5)b	17(3)b	6590(43)a
	T2 = FP		16.6(4.2)a	25.4(3.3)a	9.3(5.3)a	4.1(2.4)a	25(5)a	6150(41)b
	LSD (0.05,252)		0.20	0.36	0.24	0.17	0.24	0.43
DAT								
D1 = 36 DAT		8.9(3.0)c	11.7(2.1)b	1.5(3.2)c	1.3(1.5)c			
D2 = 50 DAT		12.2(3.3)b	23.3(3.1)a	4.4(4.6)b	2.5(1.9)b	21(5)a		
D3 = 71 DAT		10.0(2.9)c	23.2(3.0)a	8.4(5.1)a	3.2(2.1)a	27(5)a		
D4 = Pre har			12.0(5.0)a	13.7(2.4)b	10.8(5.1)a		22(5)a	
	LSD (0.05,252)		0.28	0.51	0.33		0.33	

Means followed by the same letter in a column are not significantly different; Values in parenthesis are Atkinson's transformed values

In this zone, weed data was recorded at four locations, Coimbatore, Gangavathi, Mandya and Puducherry. At Coimbatore, the weed population in IPM plots was lower than farmers practice by 60.0 and 55.0% at 30 and 60 DAT, respectively. The weed dry biomass at 30 and 60 DAT in IPM plots was lower than farmers practice by 58.4 and 48.7%, respectively and contributed to the mean grain yield advantage of 18.2 % in IPM adopted plots with CO 52 variety. At Gangavathi, the weed population in IPM plots was lower than farmers practice by 87.0 and 62.7% at 30 and 60 DAT, respectively. Similarly, the weed dry biomass in IPM plots was lower than farmers practice by 74.2 and 55.4% at 30 and 60 DAT and contributed to the mean grain yield advantage of 6.2 % in IPM adopted plots.

At Mandya also, the weed population in IPM plots was lower than farmers practice by 65.7 and 64.1% at 30 and 60 DAT, respectively. The weed dry biomass in IPM plots was lower than farmers practice by 83.4 and 73.8% at 30 and 60 DAT, respectively and contributed to the mean grain yield advantage of 14.5 % in IPM adopted plots. At Puducherry, the weed population was lower than farmers practice in IPM plots by 24.9 and 27.7% at 30 and 60 DAT, respectively with lower weed biomass in IPM implemented fields (24.1 and 39.1%). The mean grain yield advantage was 4.9% in IPM adopted plots (**Table 2.7.22**).

Overall, in the Southern Zone, the yield advantage of 11.0% was recorded in IPM implemented fields. The weed population reduction in IPM fields was 66.7% at 30 DAT and 48.1% at 60 DAT. The percentage reduction in weed biomass in IPM implemented fields was 67.6% at 30 DAT and 54.1% at 60 DAT.

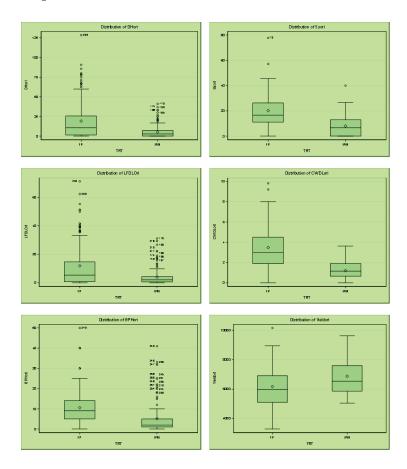


Fig. 2.7.6 Incidence of dead hearts, gall midge, leaf folder, caseworm, damage, BPH, and grain yield in IPM and FP plots across locations in Zone VII (Southern areas)

Table 2.7.22 Weed population and weed dry mass in Zone VII in IPMs, Kharif 2022

Location	Treatments	Weed popul	ation no/m²	Weed dry biomass g/m ²		
		30 DAT	60 DAT	30 DAT	60 DAT	
	IPM	6.4(2.6)	13.4(3.7)	4.6	9.6	
Coimbatore	FP	16.0(4.0)	29.8(5.5)	11.1	18.7	
Collibatore	Mean	3.3	4.6	7.9	14.2	
	CD (0.05)	0.28	0.23	1.40	1.10	
	IPM	19.5(4.3)	12.2(3.5)	62.3	40.9	
Gangavathi	FP	149.9(12.2)	32.8(5.7)	241.3	91.9	
Gariyavatili	Mean	8.3	4.6	151.8	66.4	
	CD (0.05)	1.23	0.98	67.97	15.37	
	IPM	4.8(2.3)	11.2(3.3)	1.0	7.8	
Mandya	FP	14.0(3.7)	31.2(5.6)	6.1	29.9	
Mandya	Mean	3	4.5	3.6	18.9	
	CD (0.05)	0.89	0.86	2.26	5.25	
	IPM	52.5(7.3)	42.0(6.5)	27.4	25.0	
Duduoborn	FP	69.9(8.4)	58.2(7.7)	36.0	41.0	
Puducherry	Mean	7.8	7.1	31.7	33.0	
	CD (0.05)	0.07	0.07	0.63	0.65	

Values in parenthesis are square-root transformed values

Disease incidence was reported from two locations, Aduthurai and Mandya. At Aduthurai, adoption of IPM practices reduced the disease severity of bacterial blight. In all the three locations disease severity was significantly reduced compared to farmers practices (L1 = IPM - 95; FP-258; L2 = IPM - 28; FP - 220; L3 = IPM - 53; FP - 225). In case of false smut disease, among the three locations, application of IPM practices were effective at two locations, wherein the disease was reduced from 119 to 41 AUDPC units (L1) and 64 to 11 AUDPC units (L2) (**Table 2.7.23**). At Mandya, the IPM practices were evaluated against leaf blast wherein the AUDPC values reduced significantly (L1: IPM-77, FP-225; L2: IPM-83, FP-202 IPM-71, FP-179)

		Aduth	nurai	Mandya
Location	Treatments	AUDPC	Values	AUDPC Values
		Bacterial Blight	False smut	Leaf Blast
I	IPM	95	41	77
Location 1	FP	258	119	225
Location 0	IPM	28	11	83
Location 2	FP	220	64	202
Location 3	IPM	53	22	71
	FP	225	0	179

Grain yield in IPM plots was relatively high as compared to FP plots. However, high gross returns along with the low cost of cultivation in IPM practices resulted in a superior BC ratio compared to FP plots, at all the locations (**Table 2.7.24**).

Table2.7.24 Returns and BC ratio in IPMs trial at Zone VII (Southern), Kharif 2022

Location	Name of the Farmer	Treatments	Yield (q/ ha)	Gross returns (Rs.)	Cost of cultivation (Rs.)	Net returns (Rs.)	BC ratio
MND	E1 = Cri Mahadayu	IPM	65.72	141298	55225	86073	2.56
MND	F1 = Sri Mahadevu	FP	58.52	125818	63375	62443	1.99
MND	FO - Cri Javananov	IPM	62.92	138424	54475	83949	2.54
MND	F2 = Sri Jayaramu	FP	53.80	118360	62250	56110	1.90
MND	F3 = Sri	IPM	59.00	109150	54100	55050	2.02
MND	Puttaswamy	FP	48.36	89466	62125	27341	1.44
ADT	F4 = Sri K	IPM	62.80	116808	32925	83883	3.55
ADT	Marimuthu	FP	51.74	96236	43900	52336	2.19
ADT	F5 = Sri Manoharan	IPM	62.80	116808	33725	83083	3.46
ADT		FP	51.74	96236	45580	50656	2.11
ADT	F6 = Sri Rajavel	IPM	62.80	116808	33225	83583	3.52
ADT	ro – Sii Kajavei	FP	51.74	96236	44610	51626	2.16
GNV	F7 = Sri Surya Rao	IPM	60.57	117506	55125	62381	2.13
GIVV	F1 - Sil Surya Nau	FP	59.68	115779	60750	55029	1.91
RNR	F8 = Sri Krishna	IPM	87.38	178255	56628	121627	3.15
KINK	Patel	FP	83.69	170728	64000	106728	2.67
DND	F9 = Sri	IPM	83.07	169463	56628	112835	2.99
RNR	Eshwaraiah	FP	74.89	152776	63750	89026	2.40
		IPM	67.45				2.88
		FP	59.35				2.08

Price of Paddy: F1= Rs. 2150/q; F2 = Rs.2200/q; F3 = Rs.1850/q; F4, F5 & F6= Rs. 1860/q; F7 = Rs. 1940/q; F8 & F9 = Rs. 2040/q

Among the zones, stem borer and leaf folder incidence was observed in all the zones while gall midge incidence was observed in three zones, Zone IV, V & VII (**Table 2.7.25**). In two zones, the incidence of whorl maggot (Zone IV & V), BPH (Zone II & VII), and WBPH (Zone II & VI) were reported. Caseworm and thrips incidence was observed only at Zone VII and Zone V, respectively.

Table 2.7.25 Incidence of various insect pests in different treatments at various zones

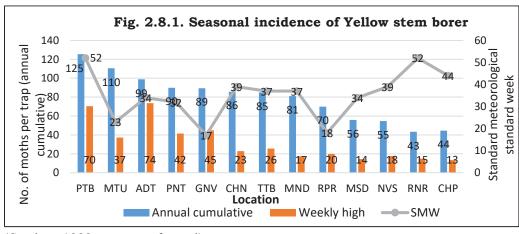
Zones	Treatments	% DH/WE	% SS	% LFDL	% WMDL	% CWDL	% THDL	ВРН	WBPH	Yield kg/ha	BC ratio
Zone I	IPM			11.5						3640	3.16
Zone i	FP			16.9						2208	2.53
Zone II	IPM	4.4		3.2				15	6	5462	2.97
Zone ii	FP	6.2		18.2				29	8	5108	2.41
Zone III	IPM	4.3		4.9						5592	2.13
Zone iii	FP	8.0		2.5						4456	2.04
Zone IV	IPM	8.1	2.3	4.2	1.3					4562	1.97
Zone iv	FP	9.8	4.6	3.6	6.0					3268	1.67
Zone V	IPM	6.5	10.5	2.3	5.3		5.7			4926	4.61
Zone v	FP	17.4	26.7	6.6	8.1		11.9			4202	3.09
Zone VI	IPM	3.9		8.4					16	4221	1.57
Zone vi	FP	5.6		11.9					22	3445	1.52
Zone VII	IPM	5.5	8.0	4.0		1.4		5		6745	2.88
ZONE VII	FP	19.3	20.2	11.9		4.1		11		5935	2.08

Integrated Pest Management special (IPMs) trial was conducted with zone-wise practices at 21 locations in 42 farmers' fields during Kharif 2022. In Zone I (Hilly areas, dead hearts caused by black beetle was predominant in both IPM (24.2%) and FP plots (31.8%) followed by leaf folder in FP plots (16.9%). In Zone II (Northern areas), the incidence of stem borer, leaf folder, BPH, and WBPH was observed. Leaf folder incidence (> 20 % LFDL) was higher in FP plots at Kaul. In Zone III (Eastern areas) and Zone IV (North Eastern areas), stem borer, gall midge, leaf folder, whorl maggot, and BPH were observed but the incidence was low. In Zone V (Central areas), a high incidence of gall midge was observed in all the FP plots (15.3 – 37.2% SS) compared to IPM plots (9.9-11.3% SS) at Jagdalpur. Thrips damage was also high in FP plots at Jagdalpur (8.9-14.3% THDL) as against IPM plots (8.9-14.3% THDL). However, the incidence of stem borer, leaf folder, whorl maggot, and BPH was low. In Zone VI (Western areas), the incidence of stem borer, leaf folder, and WBPH was low in both IPM and FP plots across locations. In Zone VII (Southern areas), stem borer incidence was high in FP plots at Aduthurai (35.3-46.1% DH) compared to IPM plots (5.4-15.6% DH). Similarly, gall midge and leaf folder incidence were high in FP plots and low in IPM plots in all three farmers' fields at Aduthurai.

IPM implemented plots resulted in mean grain yield advantage of 51.0, 25.0, 21.4, 10.9, 45.0 and 11.0% in Zone-I, III, IV, V, VI and VII, respectively over the farmer practices. In IPM adopted fields, the mean weed population reduction over the Zones ranged from 22.5 % in Zone-V (Central areas) to 66.7 % in Zone-VII at 30 DAT; and from 27.6 % in Zone-I (Hilly areas) to 56.1 % in Zone-I at 60 DAT. The dry weed biomass reported from 13 locations showed that, both at 30 and 60 DAT, biomass

was reduced significantly by 15.7 % in Zone-V (Central areas) to 69.7% in Zone-VI (Western areas); 18.2 % in Zone-V (Central areas) to 54.1% in Zone-VI (Western areas).

Adoption of IPM practices effectively reduced the disease progression of leaf blast, neck blast, bacterial blight, sheath blight, and brown spot in Zone II (Northern areas), leaf blast, neck blast, bacterial blight and sheath blight in Zone III (Eastern areas). There was significant reduction in the disease development of leaf blast, neck blast and sheath blight in Zone V (central areas), sheath rot and glume discolouration in Zone VI (Western areas), bacterial blight, false smut and leaf blast in Zone VII (Southern areas) due to the adoption of IPM practices.


Grain yields were significantly high in IPM-implemented plots resulting in high gross returns. Overall, BC ratios of IPM plots were superior to that of FP mainly due to better yields, lower input costs, and better returns.

2.8 POPULATION DYNAMICS OF RICE INSECT PESTS ASSESSED THROUGH LIGHT TRAP CATCHES

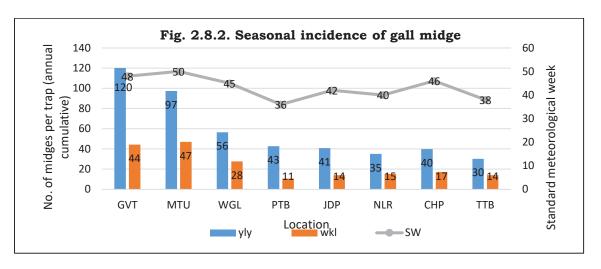
The population dynamics of insect pests and their natural enemies vary with the geographic location and cropping system. Insect pest populations, during the crop season are always a function of abiotic and biotic factors. Besides biotic potential, to a large extent, abiotic factors like temperature, rainfall, relative humidity, sun shine hours, etc. and biotic factors such as predators, parasitoids, entomopathogenic organisms, etc. determine the abundance of insect pests in a crop ecosystem. Therefore, to design any effective location specific pest management strategies, knowledge of population dynamics of insect pests in relation to abiotic and biotic factors becomes vital. Since rice is grown in diverse agro-climatic zones in India, concerted efforts are being made under AICRIP to study the population dynamics of insect pests of rice at different locations across the country to understand short- and long-term changes in rice pest scenario.

During year 2022, insect populations in rice ecosystems were recorded daily, throughout the year using light traps (Chinsurah/Robinson type) in 29 locations. These locations are namely; ADT, CHN, CHP, BMV, GNV, KRK, KJT, KUL, LDN, MLN, MND, MTU, MSD, MNC, KHD, NVS, NWG, NLR, PNT, PTB, RNR, RPR, CBT, JDP, TTB, CHT, RGL, GGT and WGL. Corresponding weather data on temperature, rainfall, relative humidity, sunshine hours, etc. were also collected. Weekly cumulative catches of insects and weekly averages of weather parameters were worked out on standard week (SW) basis. Highlights and trends of the data collected during the year 2022 are presented hereunder:

Yellow stem borer: Yellow stem borer was recorded in 23 locations, except in KHD and CHT. Annual cumulative catches were highest at PTB (15728), followed by MTU (12200) and ADT (9776). Highest weekly catch was at ADT, PTB, and GNV in 34th, 52nd, and 17th SW respectively. Whereas, in the previous year annual cumulative catches were highest at MTU (16755) followed by ADT (15607) and PNT (13168) and weekly highest catch was in PNT (2950) in 37th SW followed by NLR (2635) in 37th and ADT (2019) in 33rd SW **(Table 2.8.1 and Fig. 2.8.1).**

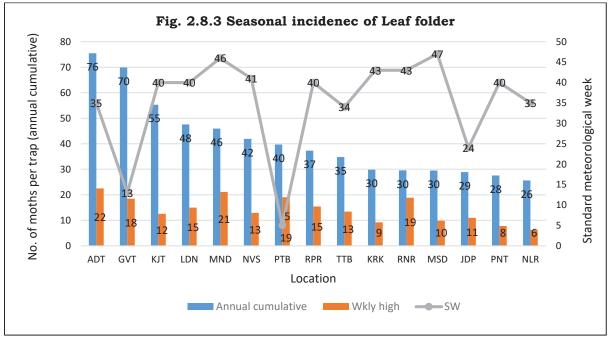
(Catches>1000, sqrt transformed)

Table 2.8.1. Seasonal incidence of yellow stem borer based on light trap catches


S. No.	Zone	Location	Annual cumulative	Weekly high	SW
1		PNT	8091	1723	32
2	Zone-II North	LDN	76	14	37
3		KUL	589	61	23
4		CHP	1978	181	44
5	Zone-III East	TTB	7224	655	37
6		CHN	7344	523	39
7		JDP	544	37	45
8	Zone-V Central	RPR	4886	393	18
9		MSD	3119	208	34
10		KJT	239	15	28
11	Zone-VI Western	NWG	272	24	39
12		NVS	2997	310	39
13		CBT	565	48	16
14		GNV	7995	2006	17
15		KRK	781	62	52
16	nerr	NLR	847	80	37
17	Soth	MTU	12200	1386	23
18	=	MND	6565	304	37
19	^-ө	MNC	190	15	1
20	Zone-VII: Sothern	PTB	15728	4966	52
21	17	RNR	1871	227	52
22		WGL	926	178	45
23		ADT	9776	5427	34

Gall midge: Gall midge occurrence was observed at 11 locations. It was not recorded from Hills, Northern and Western Zone. Annual cumulative catches were highest in GNV (14436) followed by MTU (9483) and WGL (3186) and in terms of weekly cumulative catch, it was most active in MTU (2201) in 50th SW, followed by GNV (1962) in 48th SW and WGL (765) in 45th SW (Fig. 2.16). In the previous year annual cumulative catches were highest in GNV (8829) followed by WGL (4129) and MTU (3470). In terms of weekly cumulative catch, it was most active in GNV (774) in 49th SW, followed by WGL (746) in 43rd SW and SKL (538) in 41st SW **(Table 2.8.2 and Fig. 2.8.2).**

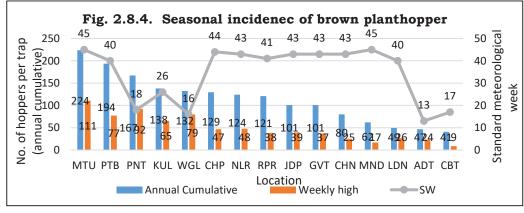
Table 2.8.2. Seasonal incidence of gall midge based on light trap catches


Zone	Location	Annual cumulative	Weekly high	SW
	GNV	14436	1962	48
	MTU	9483	2201	50
	WGL	3186	765	45
Zone-VII: Sothern	PTB	1819	116	36
Zone-vii. Sothem	NLR	1227	235	40
	MNC	27	8	5,6
	KRK	7	6	32
	RNR	1	1	39
Zone V: Central	JDP	1667	196	42
Zone III: Eastern	CHP	1589	296	46
Zone III. Easteili	TTB	915	195	38

ICAR-IIRR Annual Progress Report 2022, Vol. 2 – Entomology

(Catches>900, sqrt transformed)

Leaf folder: Leaf folder also was recorded at 25 locations across the zones. It was most active in ADT, GNV, and KJT in terms of annual cumulative catches. Whereas, weekly cumulative catches were highest at ADT, MND, followed by PTB during 35th, 46th, and 5th SWs respectively. In the previous year it was most active in MSD (17661), MND (2871), MTU (2683) in terms of annual cumulative catches. Whereas, weekly cumulative catches were highest at MSD (3753) in 41th SW, MTU (999) in 45th SW followed by RNR (962) in 16th SW **(Table 2.8.3 and Fig. 2.8.3).**



(Catches>600, sqrt transformed)

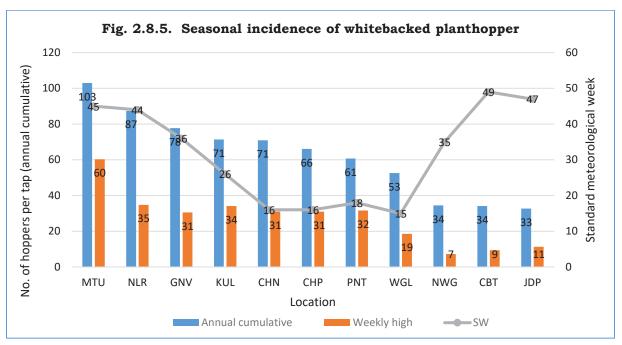
Table 2.8.3. Seasonal incidence of leaf folder based on light trap catches

S. No.	Zone	Location	Annual cumulative	Weekly high	SW
1	Zone I: Hills	MLN	32	11	19
2		PNT	760	60	40
3	Zone-II North	LDN	2267	224	40
4		KUL	246	14	22
5		CHP	196	18	43
6	Zone-III East	TTB	1210	180	34
7		CHN	251	26	42
8		JDP	835	120	24
9	Zone-V Central	RPR	1392	237	40
10		MSD	871	97	47
11		KJT	3060	156	40
12	Zone-VI Western	NWG	58	15	44
13		NVS	1759	166	41
14		CBT	114	19	18
15		GNV	4886	342	13
16		KRK	890	84	43
17	E	NLR	658	39	35
18	the	RGL	7	3	33
19	တိ	MTU	82	13	16
20	┊	MND	2110	445	46
21	Zone-VII: Sothern	MNC	232	16	44
22	Z0	PTB	1573	363	5
23		RNR	876	356	43
24		WGL	264	34	11
25		ADT	5701	506	35

Brown planthopper: Brown plant hopper was recorded in 25 locations. BPH was most abundant at MTU and PTB on yearly cumulative basis. Weekly cumulative catches were also highest at MTU, PNT, and WGL during 45th, 18th and 16th SW respectively. However, data reveals that in the rainy season during 40th-45th SWs, brown planthopper was most abundant. Synchrony between the crop phenological stage with favourable weather factors could be responsible for high population build-up. In 2021, brown plant hopper was recorded in 22 locations. BPH was most abundant in CHP (294262), followed by RPR (158186) and PNT (76419) on yearly cumulative basis (**Table 2.8.4 and Fig. 2.8.4**).

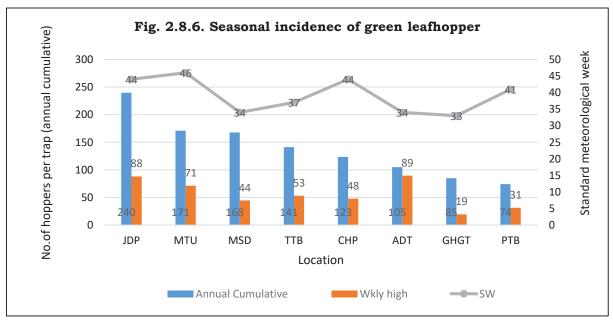
(Catches>1000, sqrt transformed)

Table 2.8.4. Seasonal incidence of brown planthopper based on light trap catches


S.No.	Zone	Location	Annual cumulative	Weekly high	SW
1	Zone I: Hills	MLN	276	41	20
2		PNT	27992	8509	18
3	Zone-II: North	LDN	2434	700	40
4		KUL	19062	4270	26
5		CHP	16766	2169	44
6	Zone-III: East	TTB	31	31	39
7		CHN	6425	629	43
8	Zone-V: Central	JDP	10197	1545	43
9	Zone-v. Central	RPR	14654	1476	41
13	Zone VI: Western	NVS	563	63	45
14		CBT	1686	77	17
15		GNV	10145	1369	43
16		KRK	39	19	52
17		NLR	15434	2285	43
19		MTU	50083	12290	45
20	Zone-VII: Sothern	MND	3864	286	45
21		MNC	739	61	39
22		PTB	37555	5968	40
23		RNR	816	402	44
24		WGL	17482	6319	16
25		ADT	2183	556	13

Whitebacked planthopper: Whitebacked planthopper was recorded in 18 locations spread across all the zones. Highest annual cumulative catches were recorded at MTU, NLR, and GNV. Whereas, population was most active during 45th, 26th, and 35th SWs at MTU, NLR and KUL respectively. In KUL, CHN, CHP, PN and WGL it was most active during the *Rabi* season. In year 2021, annual cumulative catches were highest in MTU (15935), followed by GNV (7193) and SKL (6074). Whereas, weekly cumulative catches were highest in MTU (3300) in 44th SW followed by GNV (2163) in 46th SW and PNT (1560) in 43rd SW **(Table 2.7.5 and Fig. 2.7.5)**.

Table 2.8.5. Seasonal incidence of whitebacked planthopper based on light trap catches

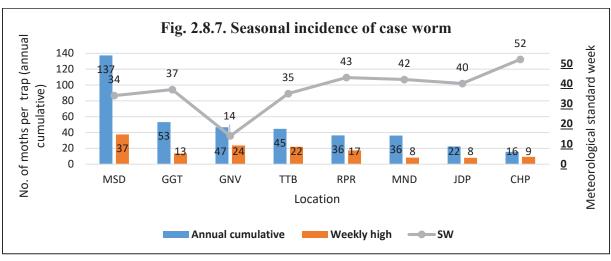

S.No	Zone	Location	Annual cumulative	Weekly high	SW
1	Zone I: Hills	MLN	134	24	19
2		PNT	3688	1002	18
3	Zone-II North	LDN	464	128	39
4		KUL	5092	1162	26
5		CHP	4373	960	16
6	Zone-III East	TTB	27	27	31
7		CHN	5029	960	16
8	Zone-V Central	JDP	1067	128	47
9	Zone-v Cential	RPR	740	210	42
10	Zone VI-Western	NWG	1190	53	35
11	Zone vi-western	NVS	476	66	42
12		CBT	1162	88	49
13		GNV	6041	934	36
14		KRK	10	4	49
15	Zone-VII: Sothern	NLR	7644	1210	44
16		MTU	10603	3632	45
17		MNC	84	8	37
18		WGL	2765	345	15

ICAR-IIRR Annual Progress Report 2022, Vol. 2 – Entomology

(Catches>1000, sqrt transformed)

Green leafhopper: Green leafhopper was recorded from 24 locations. Highest annual cumulative population was found at JDP, MTU, and MSD. It was most active during 44th, 46th and 37th SWs at JDP, MTU and TTB respectively. Data reveals that GLH is mainly a rainy season pest. In 2022, at JDP (92815) annual cumulative catches were highest followed by PTB (65651) and MSD (35393). Weekly cumulative catches were highest in PTB (10516) in 2nd SW, followed by JDP (9206) in 40th SW and MSD (7941) in 40th SW **(Table 2.8.6 and Fig. 2.8.6).**

(Catches>5000, sqrt transformed)

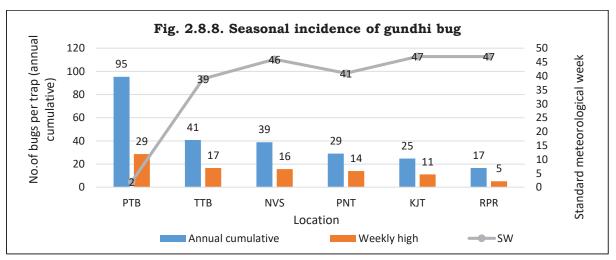

Table 2.8.6. Seasonal incidence of green leafhopper based on light trap catches

S. No.	Zone	Location	Annual Cumulative	Weekly high	SW
1	Zone-I Hills	MLN	26	3	15
2		CHT	1534	481	7
3	Zone-II North	KUL	563	408	14
4		PNT	2050	795	41
5		TTB	19931	2799	37
6	7	CHP	15236	2287	44
7	Zone-III East	CHN	1513	130	43
8		GHGT	7201	375	33
9		MSD	28185	1976	34
10	Zone-V Central	RPR	463	80	42
11		JDP	57495	7776	44
12	Zana VI Wastawa	KJT	4000	340	49
13	Zone-VI Western	NVS	955	129	42
14		ADT	10972	8005	34
15		PTB	5509	981	41
16		WGL	4901	1286	40
17		GNV	3459	226	43
18		NLR	1734	364	42
19	Zone-VII: Sothern	CBT	1344	91	16
20		RNR	1087	415	42
21		MND	803	46	36
22		MNC	802	54	6
23		KRK	532	54	47
24		MTU	29191	5095	46

Case worm: Case worm was recorded in 11 location spread across four zones. It was most active in MSD, GHGT, and GNV. Except at GNV and CBT; CW was most active during the rainy season. Weekly catches were highest at GGT followed by GNV and TTB during 37th, 14th and 35th SWs respectively. In the year 2022, it was most active in MSD (18876), followed by MLN (2566) and TTB (2324) **(Table 2.8.7) and Fig. 2.8.7).**

Table 2.8.7. Seasonal incidence of case worm based on light trap catches

S.No	Zone	Location	Annual cumulative	Weekly high	SW
1		CHP	243	87	52
2	Zone-III: East	TTB	1984	484	35
3		GGT	2828	181	37
4		RPR	1316	297	43
5	Zone-V: Central	JDP	501	65	40
6	Zone v. Gentiai	MSD	18876	1404	34
7	Zone-VI: Western	KJT	1	1	32
8		MND	1298	66	42
9	Zone-VII: Sothern	GNV	2171	555	14
10	Zune-vii. Sutileiti	CBT	37	3	1
11		MTU	14	14	50

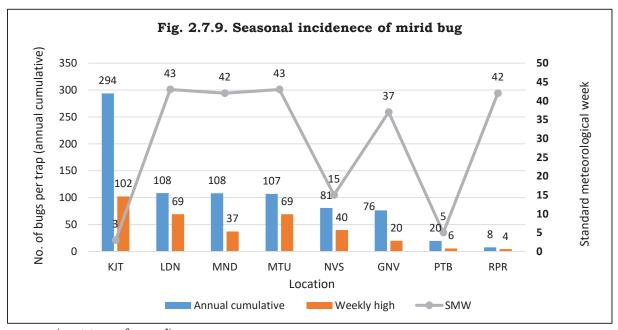


(Catches>10)

Gundhi bug: Rice gundhi bug was recorded at six locations: PTB, TTB, NVS, PNT, KJT and RPR. It was most abundant in PTB followed by TTB and NVS. Weekly peak catches were also highest at the same locations in 2nd, 39th and 46th SWs. In year 2022 its activity was high in PTB (7100), followed by MSD (1890), and TTB (1604) **(Table 2.8.8 and Fig. 2.8.8).**

Table 2.8.8. Seasonal incidence of gundhi bug based on light trap catches

			<u> </u>	
S. No.	Location	Annual cumulative	Weekly high	SW
1	PTB	9075	820	2
2	TTB	1667	276	39
3	NVS	1510	245	46
4	PNT	842	196	41
5	KJT	613	123	47
6	RPR	275	27	47



(sqrt transformed)

Mirid bug: It was reported from LDN, RPR, NVS, KJT, GNV, PTB, MND and MTU. Except in KJT, NVS and PTB it was most active during the rainy season. It was most abundant in KJT, LDN, MND followed by MTU. Highest weekly catches were recorded at LDN and MND followed by MTU in 42 and 43 SWs respectively (Table 2.8.9 and Fig. 2.8.9).

Table 2.7.9. Seasonal incidence of green leafhopper based on light trap catches

S. No.	Zone	Location	Annual cumulative	Weekly high	SW
1	Zone I: North	LDN	11767	4795	43
2	Zone-V: Central	RPR	58	20	42
3	Zana VIII Waatara	NVS	6532	1592	15
4	Zone VI: Western	KJT	86285	10450	3
5		GNV	5838	399	37
6	Zone-VII: Sothern	PTB	383	32	5
7	Zone-vii. Sotnem	MND	11718	1382	42
8		MTU	11463	4785	43

(sqrt transformed)

White stem borer was reported from TTB, PTB, and MLN. Pink stem borer was also reported from LDN, RNR, and RPR. Black bug was reported from five locations: MLN, ADT, TTB, MTU, and MNC. Zigzag leaf hopper was found in three locations: RPR, MTU, and JDP. Paddy skipper was reported from NVS. White grub was a concern at KHD and CHT. Grasshoppers were regular pests at CHT.

Overall, the light trap data revealed that yellow stem borer, leaf folder, and hoppers continued to be the most important pests in terms of numbers as well as spread across the locations. Gall midge continues to be an endemic pest. However, case worm, and gundhi bug showed an increase in the spread and intensity of incidence posing concern for future. Patterns in seasonal incidence and population build up based on light trap data indicates that the key pests are reaching their peak levels in the months of October and November in the kharif season. Therefore, strategies are to be timed accordingly for the effective management of insect pests in rice.

Rabi 2021-2022

Summary

- 1. Stem borer screening trial (SBST): Evaluation of 45 entries in 8 valid field tests (5 tests for dead heart damage and 2 tests for white ear damage and 1 test for grain yield) identified 3 entries viz., WGL1062, NND5, NSR 88 (RP BIO 4919) with $\leq 5\%$ WE as promising in 1 test for low white ear damage and one test for high grain yield (≥ 15 g/hill suggesting that recovery resistance and tolerance could be the mechanism in these entries as they recorded good grain yield despite damage.
- **2. Multiple resistance screening trial (MRST)** Evaluation of 35 entries against planthoppers at Maruteru under field conditions identified nine entries as promising *viz.*, RPBio4918, Cul M9, JS 5, W 1263, CRCPT 7, CRCPT8, Suraksha, RP 2068-18-3-5 33 with DS 3.0 and PTB 33 with DS 1.
- **3. National Screening Nursery (Boro)** Evaluation of 58 entries along with 14 disease checks and 10 insect checks in NSN boro trial at 5 locations in 11 valid tests against 5 insect pests identified 5 entries *viz.*, IET No 29599, 29632, 28852, 30463, 30472 as promising in 2-3 tests against 1-3 pests.

Insecticides and Botanical Evaluation Trial (IBET) was carried out at 6 locations to evaluate the efficacy of four combination modules/treatments against major insect pests of rice and grain yield during Rabi, 2021-22. Based on the performance of the treatments in reducing the pest incidence at various locations, all insecticide treatment-Chlorantraniliprole, Cartap hydrochloride and Triflumezopyrim-was found effective against damage by stem borer, plant hoppers, leaf folder and whorl maggot. Highest grain yield of 4776.0 kg/ha was recorded in all insecticide treatment.

Ecological engineering for planthopper management (EEPM) was taken up in Maruteru and Moncompu with a combination of interventions such as organic manuring, and growing of flowering plants on bunds. The results were not confirmatory.

Integrated Pest Management special (IPMs) trial was conducted at five locations in ten farmer's fields during Rabi 2021-22. Incidence of stem borer, leaf folder, gall midge, hispa, whorl maggot, BPH and WBPH was observed in both IPM and FP plots across locations. Dead heart incidence crossed ETL at Pattambi (22.7%) in FP plots alone while it crossed ETL in IPM (30.9%) and FP plots (22.0%) at Aduthurai. Incidence of gall midge was very high at Pattambi in both IPM (23.5%) and FP plots (57.8%) while at Aduthurai, it was high in IPM plots in two farmer's fields (32.2-38.2% SS) and high in FP plot in one farmer field (35% SS). The incidence of whorl maggot (31.3% WMDL), caseworm (24.5% CWDL) and blue beetle (30.4% BBDL) was high in FP plots as compared to IPM plots. Across the locations, gross returns were high in IPM plots due to the high grain yield and low cost of cultivation resulting in a high BC ratio.

Rabi 2021-2022

i. Stem borer screening trial (SBST)

During Rabi 2021-22, **Stem borer screening trial (SBST)** comprising of 45 nominations from IIRR, Jagtial, Rudrur, Warangal, Sakoli and NRRI Cuttack were evaluated at 5 locations *viz.*, IIRR, Cuttack, Pattambi, Maruteru and Rajendra Nagar. At each location, observations were recorded on dead heart damage at vegetative phase and white ear damage, grain yield in the infested plant and the larval survival in the stubbles at harvest. For effective screening, two staggered sowings were taken up in most of the locations or efforts were made to infest the plants. The results of the evaluation against yellow stem borer damage from the valid tests are discussed below and some of the best lines were identified.

Dead heart damage: The dead heart damage in the trial varied from 10.9% to 59.14% with an average damage of 25.9% DH across 3 locations in 5 valid tests. None of the entries were promising for dead heart damage.

White ear damage: The white ear damage across 2 locations in 2 valid tests varied from 0.0 to 68.4% with a mean of 38.88% WE. Evaluation of entries identified WGL1062, NND5, NSR 88 (RP BIO 4919) as promising with ≤5 % WE damage. The larval survival recorded at Rajendranagar was 1-3 larvae/ hill stubbles. Traces of pink stem borer larvae were also observed in few entries.

Grain yield: The grain yield in the lines with low white ear damage was WGL1062, NND5, NSR 88 (RP BIO 4919) 23.4,25.4 and 19.2g/hill, respectively. Another 32 entries recorded higher grain yield (≥15g grain yield /hill) despite high white ear damage.

Overall reaction: Evaluation of 45 entries in 8 valid field tests (5 tests for dead heart damage and 2 tests for white ear damage and 1 test for grain yield) identified 3 entries viz., WGL1062, NND5, NSR 88 (RP BIO 4919) as promising with ≤ 5 % WE in one test with low white ear damage and high grain yield (1test) for high grain yield (≥ 15 g/hill) suggesting that recovery resistance and tolerance could be the mechanism in these entries as they recorded good grain yield despite damage **(Table 2.1.1)**.

Table 2.1.1 Reaction of most promising cultures to stem borer in SBST, Rabi 2021-22

		IIRR	IIRR	PTB	PTB	СТС	SB DH	IIRR	PTB	SB WE	SBDH +WE	IIRR	GY	SBDH+ WE+GY
S.	Entries	66	78	30	85	51 DT	NPT	92	85	NPT	NPT		NPT	NPT
No.		DAT	DAT	DAT	DAT	DT		DAT	DAT					
		DH	DH	DH	DH	DH	5	WE	WE	2	7	GY/	1	8
		(%)	(%)	(%)	(%)	(%)	Ů	(%)	(%)	_	,	h	-	Ū
1	CR Dhan 308	10.9	36.5	25.2	24.2	5.9	0	23.8	24.2	0	0	28.3	1	1
23	WGL 1062*	24.4	22.4	19.7	39.8	16.4	0	1.4	39.8	1	1	23.3	1	2
36	NND5*	25.8	23.6	38.0	NF	14.1	0	0.0	NF	1	1	25.4	1	2
42	NSR 88 (RP BIO 4919)	54.2	56.1	22.5	32.9	14.7	0	1.8	32.9	1	1	19.2	1	2

*Entry under retesting. Data on SB from RNR not included due to low pest pressure

ii. Multiple resistance screening trial (MRST): The trial was constituted with 30 entries and five checks and conducted at Khudwani, Maruteru and Rajendranagar. At Maruteru incidence of stem borer damage, and planthoppers was observed. Stem borer incidence was observed at RRS, Rajendranagar. Rice skipper and grasshopper incidence was recorded at Khudwani. Valid data on field reaction to planthopper from Maruteru identified nine entries *viz.*, RPBio4918, Cul M9, JS 5, W 1263, CRCPT 7, CRCPT8, Suraksha, RP 2068-18-3-5 as promising with DS 3.0 and PTB 33 with DS 1.

iii. NSN- Boro:

NSN Boro trial was constituted with 58 boro entries along with 14 disease checks and 10 insect checks. Entries evaluated at 5 locations *viz.*, Coimbatore, Pattambi, Maruteru, Titabar and Gerua against 7 insect pests. The results are discussed pest wise.

BPH: Evaluation of entries in greenhouse test at Coimbatore identified IET Nos 29599, 30451 and 30472 as promising with a DS \leq 3.0 but they were highly susceptible in field reaction at Maruteru. PTB 33 had a damage score of 3.2 and MO1 recorded 2.8. However, IET Nos 30463, 30449, 30458, 30448, 30453, 30459, 30467 along with PTB 33 recorded a DS 3.) in field evaluation at Maruteru.

WBPH: IET nos 29599, 30460 and 30472 recorded a DS \leq 3.0 in greenhouse evaluation at Coimbatore.

Gall midge: None of the entries was promising in field reaction at Titabar.

Stem borer: Rajyalakshmi (hybrid check) recorded nil damage at Gerua out of three valid tests for dead heart damage. IET Nos 29632 28852 and 30442 were promising with a reaction of ≤ 5 % WE (DS1.0) at both Pattambi and Titabar. Another five entries recoded nil white ear damage at Pattambi.

Other pests: Leaffolder damage was recorded at Titabar (6.7%DL) and Pattambi (Mean 14.5% DL). Whorl maggot at Pattambi (8.7% DL) and gundhi bug damage (6.8 % DG) from Titabar was reported.

Overall reaction: Evaluation of 58 entries along with 14 disease checks and 10 insect checks in NSN boro trial at 5 locations in 11 valid tests against 5 insect pests identified 5 entries viz., IET No. 29599, 29632, 28852, 30463, 30472 as promising in 2-3 tests against 1-3 pests **(Table 2.1.2)**.

Table 2. 1.2 Reaction of cultures to insect pests in NSN (Boro) trial, Rabi 2021- 2022

				CBT	MTU		CBT		TTB		PTB	TTB	Gerua		PTB	TTB		PTB	TTB		
				BPH	BPH	BPH	WBPH	WBPH	GMB		SBDH	SBDH		SBDH	SBWE	SBWE	SBWE	LF	LF	LF	
				GH	80DT	NPT	GH	NPT	45DT	GM	30DT	45DT	56 DT	NPT	Pr.h	84DT	NPT	60DT	52DT	NPT	Overall NPT
B.ENO	Entry No.	IET No.	Designation	DS	DS	2	DS	1	%SS	1	%DH	DH%	%DH/DT	3	%WE	%WE	2	%DL	%DL	2	11
2108	2108	29599	KAUM 238-1-1-1-1	1.4	9.0	1	2.8	1.0	14.3	0	22.8	17.9	6.3	0	0.0	9.5	1	22.2	4.9	0	3
2113	2113	29632	CR 4340-2-4-GSR IR2- 1-R6-N5-N3-N53-N80	NG	9.0	0	NG	0.0	19.0	0	21.7	9.5	3.3	0	0.0	4.3	2	17.8	5.7	0	2
2114	2114	28852	CR 4311-2-2-2-1-2-2	5.2	9.0	0	5.8	0.0	8.0	0	23.9	8.0	17.8	0	0.0	4.8	2	13.8	4.8	0	2
2224	2224	30463	CR 4114-2-4-2-1-2-2	5.0	3.0	1	NG	0.0	6.3	0	19.3	6.3	18.8	0	0.0	9.5	1	9.9	4.4	0	2
2233	2233	30472	MLD 208 IIRR GSR N03	3.0	7.0	1	3.0	1.0	10.3	0	27.6	13.8	20.7	0	3.1	10.5	0	13.1	7.9	0	2
	Total Teste	d		63	80		60		82		81	82	79		77	82		81	82		
Max. c	lamage in t	he trial		9	9		9		38.5		33.7	42.9	41.9		59.1	46.2		23.5	15.4		
Min. d	lamage in tl	ne trial		1.4	1.0		2.8		3.2		2.9	3.4	0.0		0.0	3.8		7.6	2.2		
Ave. d	amage in t	ne trial		5.8	8.1		6.5		10.5		19.2	10.5	13.3		11.8	17.4		14.5	6.7		
D	amage in T	N1		7.6	9.0		8.9		11.3		14.4	7.6	11.7		7.7	22.5		14.5	5.0		
Pr	omising lev	vel		3	3		3		0		0	0	0		0	5		0	0		
١	lo. promisir	ng		0	9		3		0		0	0	1		7	4		0	0		

Data on SB from MTU; WM from PTB; GB from TTB was not considered for analysis due to low pest pressure

2.2 Chemical Control studies:

1. Insecticide-Botanicals Evaluation Trial (IBET)

Insecticide-Botanicals Evaluation Trial (IBET) was carried out at 5 locations to evaluate the efficacy of four combination modules/treatments consisting of three insecticides- Chlorantraniliprole 20% SC, Cartap hydrochloride 50% SC and Triflumezopyrim 10% SC, one commercial neem formulation - Neemazal and two oils - Neem and Eucalyptus oil along with untreated control against major insect pests of rice and consequent impact on natural enemies and grain yield during Rabi, 2021-22.

Observations were recorded on pest incidence, natural enemy counts as well as grain yield as per the standard procedures. The data were subjected to Anova analysis and the performance of the treatments were evaluated based on their efficacy against the major pests specific to each location as well as the grain yields obtained in each treatment.

Pest infestation

Stem borer incidence was recorded in six locations and high dead hearts damage was recorded at Titabar (12.7-26.5%) followed by Raipur with highest of 24.4% in control plots. There were significant differences in damage among the treatments at most of the locations except Raipur. Mean dead heart damage in botanical combination treatments ranged between 7.2 and 9.4% compared to 13.9% in control, while all insecticide treatment was the most effective treatment showing 5.4% DH damage (**Table 2.2.1**).

Highest white ear damage was reported from Pattambi with 48.6-57.6% in treatments and control. All treatments significantly reduced white ear damage (12.9-17.6%) when compared to 20.0% in control. All insecticide combination was the most effective treatment against stem borer with 12.9% mean white ear damage. Among botanical treatments neemazal, eucalyptus oil and cartap hydrochloride combination was found effective with 16.1% WE.

Gall midge incidence was reported from three locations- Aduthurai, Chiplima and Ttabar. The silver shoot damage varied from 0.8-11.9% in treatments as compared to 8.3-22.6% in control. The lowest mean damage was recorded in all insecticides treatment (4.1%) while the damage recorded was 14.1% in control.

Brown planthopper incidence was recorded only from 2 locations. There were significant differences in the efficacy among the treatments at both locations, except 30DAT at Aduthurai. All insecticide treatment was the most effective treatment with lowest mean population of 11.6 BPH/10 hills compared to 44.5 per 10 hills in control. However, there was no significant difference in mean efficacy of among all treatments against hoppers.

Green leaf hopper incidence was recorded in Aduthurai and Titabar. Lowest mean number of GLH (2.8 hoppers/10 hills) was recorded in all insecticide treatment followed by neemazal, eucalyptus oil and cartap hydrochloride combination (5.1) as compared to 14.6 in control.

Leaf folder damage was reported from 3 locations and highest leaf damage was recorded in Titabar at 50DAT (23.6%). There were significant differences in leaf damage among the treatments at all locations. All insecticides combination was the most effective treatment showing mean leaf damage of 2.4% in comparison to 13.3% in control.

Whorl maggot damage was recorded in 4 locations. Highest damage was reported from Titabar centre (20.8-20.1%), while damage was 5.0-11.1% in other centres. Lowest mean damage of 3.8 % was noticed in all insecticides treatment followed by neemazal, eucalyptus oil and cartap hydrochloride combination with 4.6% when compared to control (10.9%).

Grain Yield

There were significant differences in grain yield among the treatments at all 6 locations except Pattambi. Based on mean yield of these locations, all insecticide treatment recorded the highest grain yield of 4776.0 kg/ha followed by neemazal, eucalyptus oil and cartap hydrochloride combination (4426.0). However, there was no significant difference in the mean yields recorded among treatments (**Table 2.2.2**).

Insecticides and Botanical Evaluation Trial (IBET) was carried out at 6 locations to evaluate the efficacy of four combination modules/treatments against major insect pests of rice and grain yield during Rabi, 2021-22. Based on the performance of the treatments in reducing the pest incidence at various locations, all insecticide treatment-Chlorantraniliprole, Cartap hydrochloride and Triflumezopyrim—was found effective against damage by stem borer, plant hoppers, leaf folder and whorl maggot. Highest grain yield of 4776.0 kg/ha was recorded in all insecticide treatment.

Table 2.2.1 Insect pest incidence in different treatments, IBET, Rabi 2021-22

S.		Stem borer Damage (Dead hearts)												
No.	Treatment	ADT		CTC		CHP		RPR		PTB		TTB		Mean
NO.		30DT	50DT	30DT	60DT	55DT	75DT	30DT	50DT	30DT	50DT	30DT	50DT	
1	Botanical- Insecticide 1	7.8b	8.2ab	5.1bc	3.3bc	2.9b	4.2bc	15.0a	7.0a	9.9b	10.5a	9.3b	8.7c	7.6bc
2	Botanical- Insecticide 2	5.2b	6.4b	5.4b	4.0b	4.9a	5.6b	22.3a	11.1a	9.0b	10.9a	12.8a	16.1b	9.4b
3	All Botanical	6.4b	9.0ab	6.4b	7.1a	2.2b	2.7dc	11.1a	3.5a	9.9b	5.9a	12.2a	10.5c	7.2bc
4	All Insecticide	1.9b	5.1b	3.2c	2.4c	0.4c	0.9d	13.6a	7.5a	9.5b	6.1a	6.6c	7.7c	5.4c
5	Control (Water Spray)	14.4a	13.7a	9.9a	8.0a	5.8a	9.3a	24.4a	8.0a	20.8a	14.4a	12.7a	26.5a	13.9a

Table 2.2.1 Insect pest incidence in different treatments, IBET, Rabi 2021-22

			Stem	borer D	amage (%White	Ears)		
S. No.	Treatment	ADT	CTC	CHP	RPR	PTB	TTB	Moon	
				Pr.ha	rvest			Mean	
1	Botanical-Insecticide 1	1.5b	6.2c	5.1bc	17.0b	57.6a	9.4bc	16.1a	
2	Botanical-Insecticide 2	4.5b	6.6c	7.1b	17.3b	51.7a	18.4a	17.6a	
3	All Botanical	6.4b	9.8b	4.0dc	17.2b	48.6a	12.1b	16.3a	
4	All Insecticide	3.1b	4.2d	1.5d	14.9b	47.9a	6.0c	12.9a	
5	Control (Water Spray)	17.3a	14.3a	11.4a	22.2a	49.8a	23.3a	23.0a	

Table 2.2.1 Insect pest incidence in different treatments, IBET, Rabi 2021-22

			Gall midge Damage (% Silver Shoots)							
S. No.	Common Name	Α	ADT		CHP			Mean		
		30DT	50DT	30DT	50DT	30DT	50DT			
1	Botanical-Insecticide 1	8.2b	6.9ab	3.9bc	2.5bc	7.6bc	8.4bc	6.2b		
2	Botanical-Insecticide 2	8.2b	4.5b	5.4bc	1.4c	9.8b	11.9b	6.8b		
3	All Botanical	9.2b	6.3ab	3.0c	2.4bc	5.8bc	10.7bc	6.2b		
4	All Insecticide	0.8c	3.6b	6.6b	3.0b	4.8c	6.1c	4.1b		
5	Control (Water Spray)	15.5a	9.7a	10.9a	8.3a	17.7a	22.6a	14.1a		

Table 2.2.1 Insect pest incidence in different treatments, IBET, Rabi 2021-22

		Br	Mean		
S. No.	Common Name		ADT	CHP	
		30DT	50DT	75DT	
1	Botanical-Insecticide 1	6.6a	8.3ab	77.0b	30.6a
2	Botanical-Insecticide 2	7.3a	6.0ab	25.0c	12.7a
3	All Botanical	8.3a	8.6ab	77.0b	31.3a
4	All Insecticide	7.6a	5.3b	22.0c	11.6a
5	Control (Water Spray)	13.0a	9.6a	111.0a	44.5a

Botanical-Insecticide 1:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l (60-65 DAT)
Botanical-Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

Table 2.2.1 Insect pest incidence in different treatments, IBET, Rabi 2021-22

			Leaf folder (% Damaged leaves)							
S. No.	Common Name	ADT		TTB		PTB		Mean		
		30DT	50DT	30DT	50DT	45DT	60DT			
1	Botanical-Insecticide 1	2.8b	3.5b	7.9c	6.1c	3.7b	5.4b	4.9b		
2	Botanical-Insecticide 2	3.2b	3.0b	13.4b	10.9b	2.6b	4.1bc	6.2b		
3	All Botanical	4.1b	3.5b	9.7c	8.4bc	2.7b	4.6bc	5.5b		
4	All Insecticide	1.1b	1.6b	4.1a	4.1a	0.7c	2.9c	2.4b		
5	Control (Water Spray)	9.2a	8.8a	21.2a	23.6a	8.4a	8.9a	13.3a		

Table 2.2.1 Insect pest incidence in different treatments, IBET, Rabi 2021-22

		Whorlmaggot (%Damaged Leaves)									
S. No.	Common Name	ADT		RPR		PTB		TTB		Mean	
		30DT	50DT	30DT	50DT	25DT	45DT	30DT	50DT	Weall	
1	Botanical-Insecticide 1	5.1bc	3.8b	5.1a	2.1a	4.4ab	7.0a	4.9c	5.1c	4.6b	
2	Botanical-Insecticide 2	5.7bc	3.3b	6.7a	4.7a	5.9ab	6.3a	11.4b	10.5b	6.8b	
3	All Botanical	6.5b	4.5b	6.4a	4.2a	6.0ab	6.6a	8.4b	8.5b	6.3b	
4	All Insecticide	3.2c	2.7b	4.7a	2.8a	3.0b	5.1a	4.2c	4.7c	3.8b	
5	Control (Water Spray)	11.1a	8.3a	6.1a	5.0a	7.21a	8.8a	20.8a	20.1a	10.9a	

Table 2.2.1 Insect pest incidence in different treatments, IBET, Rabi 2021-22

		Green	0/hills)			
S. No.	Common Name	ΑI	TC	TI	ſD	Mean
		30DT	50DT	30DT	50DT	
1	Botanical-Insecticide 1	7.6ab	8.0ab	2.5b	2.5c	5.1bc
2	Botanical-Insecticide 2	9.3ab	7.6ab	4.2b	4.7b	6.4b
3	All Botanical	9.3ab	9.6a	4.0b	4.5bc	6.8b
4	All Insecticide	2.6b	3.0b	3.2b	2.7bc	2.8c
5	Control (Water Spray)	12.6a	14.0a	17.0a	15.0a	14.6a

Table 2.2.1 Incidence of Natural enemies in different treatments, IBET, Rabi 2019

		Natu	ıral Enemies (No./10	hills)	
S. No.	Common Name		PTB		Mean
		Damsel flies 60DAT	Spiders 60DAT	Coccinellids 60DAT	
1	Botanical-Insecticide 1	8.3a	3.3ab	2.6a	4.7a
2	Botanical-Insecticide 2	9.0a	3.0b	3.3a	5.1a
3	All Botanical	10.3a	3.6ab	2.3a	5.4a
4	All Insecticide	7.6a	2.0b	3.0a	4.2a
5	Control (Water Spray)	7.0a	5.6a	6.0a	6.2a

Table 2..2.2 Grain Yield in different treatments, IBET, Rabi 2021-22

C No	Common Name		•	Yield (Kg/ha)			Maan
S. No.	Common Name	ADT	CTC	CHP	RPR	PTB	TTB	Mean
1	Botanical-Insecticide 1	2476.1b	3650.0b	4352.9b	10650.0a	1625.0a	3800.0c	4426.0a
2	Botanical-Insecticide 2	2285.7bc	3350.0c	4411.7b	8800.0ab	1593.7a	4000.0b	4074.0a
3	All Botanical	2095.2cd	3150.0d	4176.4c	6500.0b	1531.2a	3560.0d	3502.0a
4	All Insecticide	2857.1a	4050.0a	5058.8a	10450.0a	2000.0a	4240.0a	4776.0a
5	Control (Water Spray)	1857.1d	2800.0e	3000.0d	9500.0ab	1531.2a	2680.0e	3561.0a

Botanical-Insecticide 1:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT), Cartap hydrochloride 50% SC 2g/l (60-65 DAT)
Botanical-Insecticide 2:	Neemazal 1% EC 2ml/l (25-30 DAT), Neemoil 10 ml/l (45-50 DAT), Triflumezopyrim 10% SC 0.48ml/l (60-60 DAT)
All Botanical:	Neemazal 1% EC 2ml/l (25-30 DAT), Eucalyptus oil 2ml/l (45-50 DAT) , Neem oil 10ml/l (60-65 DAT)
All Insecticide:	Chlorantraniliprole 20% SC 0.2ml/l (25-30 DAT), Cartap hydrochloride 50% SC 2g/l (50-55 DAT), Triflumezopyrim 10% SC 0.48ml/l (65-70 DAT)

2.3 BIOCONTROL AND BIODIVERSITY STUDIES

Ecological Engineering for Planthopper Management (EEPM)

This trial was carried out at Maruteru and Moncompu during Rabi 2021-2022.

Maruteru

The EE interventions tested at Maruteru were wider spacing, alleyways, organic manuring, water management and planting of bund flora. The observations on hoppers and their natural enemies were taken five times starting from 40 DAT. The overall analysis of pooled data showed BPH population was significantly higher in EE treatment (22.29/hill) when compared to 10.94/hill in farmers practices (**Table 2.3.1**). On the other hand, Gall midge incidence was significantly lower in EE plots (6.90 %) as compared to 10.92% in non- EE plots (t=2.254; p <0.01). The population of green mirids was significantly higher in EE plots (4.00/ hills) while spiders and coccinellid numbers were on par. The white ear damage was high in both treatments though statistically they were on par and ranged from 16.55-19.82%. The projected yield in EE plots was 2193 kg/ha) was on par with that of FP plots (2467kg/ha) and the yield were probably lesser due to higher incidence of stem borer.

Table 2.3.1 Effect of ecological engineering on pests and its natural enemies at Maruteru, EEPM, *rabi 2021-22*A.

Parameters		PH / hill)	G %	M %	WE %		
	EE	FP	EE	FP	EE	FP	
Mean	22.29	10.94	6.90	10.53	19.82	16.55	
t value	5.6	55**	2.65**		1.29 ^{NS}		
df	4	18	4	8	18		
P - value	0.01		0.	01	0.20		

- 1	г	`	

Parameters	Green mirids (No./ hill)			ders / hill)		cinellids o./hill)		eld* g/ha)
	EE	FP	EE	FP	EE	FP	EE	FP
Mean	4.00	2.63	1.97	0.75	0.82	0.68	2193	2467
t value	2.9	7**	1.28 ^{NS}		1.36 NS		0.80 NS	
df	4	8	48		48		8	
P - value	0.0	01	0.20		0.18		0.46	

projected yield

Moncompu

At Moncompu, growing marigold on bunds and application of organic manure in EE Plots was followed. The observations on hoppers and their natural enemies were taken six times starting from 15 DAT. The overall analysis of pooled data showed BPH population (1.99/hill) was significantly lower in EE treatment

compared to 3.52/hill in farmers practices **(Table 2.3.2)**. However, the population of predators and parasitoids were on par in EE and FP plots.

Table 2.3.2 Effect of ecological engineering on hoppers and its natural enemies at Moncompu, EEPM, rabi 2021-22

Parameters	BPH (No./ hill)				Spiders (No./ hill)		Coccinellids (No./ hill)		
	EE	FP	EE	FP	EE	FP	EE	FP	
Mean	1.99	3.52	1.11	0.98	0.49	0.42	0.54	0.39	
t value	3.1	14**	0.6	5 NS	0.6	7 NS	1.4	10 _{NS}	
df	48		48		48		48		
P - value	0.	0.01		0.51		0.51		0.16	

Ecological engineering for planthopper management was taken up in Maruteru and Moncompu with a combination of interventions such as organic manuring, and growing of flowering plants on bunds. The results were not confirmatory.

2.4 Integrated Pest Management Special Trial (IPMs)

During *Rabi* 2021-22, IPM special trial was conducted at five locations *viz.*, Chinsurah, Maruteru, Pattambi, Aduthurai and Karjat in ten farmer's fields. Location-wise details are discussed below:

Chinsurah: IPMs trial was conducted at Sri Narayan Chandra Mondal's field at Village Bele, Radhanagar post, Pandua Mandal, Hooghly district of West Bengal. Practices followed in IPM and FP plots are given below:

Practices followed in IPMs trial at Chinsurah, Boro 2021-22

	IPM practices	Farmers practices
Area/ Variety	0.5 acre; IET 4786 (Satabdi)	0.5 acre; IET 4786 (Satabdi)
Nursery	Application of 1.5 kg mustard cake	Application of 5 kg mustard cake
Main field	 Field preparation with power tiller, cutting of bunds and levelling the field Application of 31 kg 10:26:26 + Urea @ 28 kg Application of Butachlor + hand weeding Application of Ferterra @ 4 kg/ acre Application of Coragen @ 60 ml/ acre Application of carbendazim Installation of pheromone traps @ 3/acre for stem borer 	 Field preparation with power tiller, cutting of bunds and levelling the field Application of 30 kg SSP, 23 kg MOP, Urea 30 kg Hand weeding two times Application of Carbofuran 3G @ 12 kg/ acre Spraying of Cartap hydrochloride 50 SP @ 500 g/ acre two times Application of Carbendazim

A low incidence of stem borer, leaf folder and whorl maggot was observed in both IPM and FP plots at this location. Grain yield was high in IPM plots (55.28 q/ha) resulting in higher gross returns and higher BC ratio compared to FP plots (**Table 2.4.1**)

Table 2.4.1 Insect pest incidence in IPMs trial at Chinsurah, Boro 2021-22

	% DH	% WE	% LFDL	% WMDL	Yield	Gross	Cost of	Net	ВС
Treatments	50 DAT	Pre har	50 DAT	22 DAT	kg/ ha	returns (Rs.)	ka/ha	Returns (Rs.)	ratio
IPM	7.7 ± 0.9	4.5 ± 0.9	0.9 ± 0.2	3.8 ± 0.7	5528 ± 39	107243	64205	43038	1.67
FP	6.0 ± 1.0	7.7 ± 0.7	0.4 ± 0.1	3.7 ± 0.6	4872 ± 41	94517	65820	28697	1.44

Price of paddy = Rs. 1940/q

Maruteru: IPMs trial was conducted at two farmer's fields in two villages in Achanta Mandal, i.e., in Sri Ila Babji's field at Penumanchili village and Sri D Prasad's field in Achanta village, Achanta Mandal, Andhra Pradesh. Practices followed in both the treatments are given below:

Practices	Practices followed in IPMs trial at Maruteru, Rabi 2021-22							
Area	2000 sq	2000 sq						
Variety	MTU 1121	MTU 1121						
Nursery	 Seed treatment with Carbendazim @ 10 g/ 10 kg seeds Application of carbofuran @800g/ 5 cents nursey, 5 days before pulling seedlings from nursery for transplantation 							
Main field	 Formation of alleyways of 30 cm after every 2 m Transplanting at 20 x 15 cm Clipping of leaf tips NPK @ 180-90-90 kg/ha 	 Formation of alleyways of 30 cm after every 2 m NPK @ 225-80-90 kg/ha Applied Londax power @10kg/ha within one week after transplantation+one manual weeding 						

- Application of Londax power@10kg/ha within one week after transplantation + one manual weeding
- Installed pheromone traps @ 8 traps/ ha for stem borer management
- One spray of chlorantraniliprole @ 0.3 ml/l at 60 DAT
- Spraying of triflumezopyrim 10 SC @ 94 ml/acre at 60 DAT
- Mid-season drainage
- Blanket application of propiconazole @ 1ml/liter
- Spraying of tricyclazole @ 0.6 g/l against leaf blast
- Application of dinotefuran, pymetrozine and triflumezopyrim against brown planthoppers
- Spraying of tricyclazole and isoprothiolane against leaf blast
- Application of ferterra granules, cartap hydrochloride granules and spraying of acephate
 @ 3 g/l against stem borer
- Spraying of tricyclazole and isoprothiolane against leaf blast
- Spraying of hexaconazole and azoxystrobin +difenconazole (amistar top) against sheath blight

Incidence of stem borer, gall midge, leaf folder, hispa, BPH and WBPH was observed in both IPM and FP plots in both the farmer's fields (**Table 2.4.2**). The BPH population crossed ETL in both treatments from 67 DAT onwards, which was reduced with the intervention of IPM practices. However, the incidence of other pests was low in both the locations and treatments. Grain yield was high in IPM plots compared to FP plots resulting in higher returns and high BC ratio (**Table 2.4.3**).

Table 2.4.2 Insect pest incidence in IPMs trial at Maruteru, Rabi 2021-22

Farmer	Treatments	% DH	% WE	% SS	% LFDL	% HDL	BPH/hill	WBPH
Name	Treatments	37 DAT	Pre-har	37 DAT	52 DAT	22 DAT	67 DAT	67 DAT
Sri Ila Babji	IPM	4.2 ± 0.7	4.1 ± 0.3	1.1 ± 0.5	0.8 ± 0.2	1.1 ± 0.3	245 ± 8	74 ± 5
SII lia babji	FP	7.2 ± 0.6	6.2 ± 0.7	1.5 ± 0.3	1.4 ± 0.2	0.3 ± 0.1	356 ± 16	76 ± 15
Sri D Prasad	IPM	6.7 ± 0.8	4.6 ± 0.3	2.4 ± 0.9	1.1 ± 0.2	1.0 ± 0.2	253 ± 5	47 ± 6
SII D Flasau	FP	6.4 ± 0.7	7.7 ± 0.4	3.3 ± 0.5	1.5 ± 0.1	1.6 ± 0.2	501 ± 21	44 ± 6

Table 2.4.3 Returns and BC ratio in IPMs trial at Maruteru, Rabi 2021-22

Treatments	Yield (Q/ ha)	Gross Returns (Rs.)	Cost of Cultivation (Rs.)	Net Returns (Rs.)	BC Ratio
IPM	81.14	139967	52150	87817	2.68
FP	84.5	145763	58750	87013	2.48

Price of Paddy = Rs. 1725/q

Pattambi: IPMs trial was conducted at Sri Ummer's field in Parambil house, Kondurkara village, Palakkad district, Kerala State. Supriya variety was grown in both IPM and FP plots during *Rabi* 2019-20. Practices followed in IPM and FP plots are given below:

Practices followed in IPMs trial at Pattambi, Rabi 2021-22

	IPM practices	Farmers Practices
Area	4000 sq.m	4000 sq m
Variety	Supriya	Supriya
Fertilizers	Application of NPK @ 90:45:55	Application of 100 kg Factomphos, 75 kg urea and 40 kg Potash
Nurse	 Seed treatment with Pseudomonas fluorescence @ 10g/kg seed Seedling dip with Pseudomonas @ 20 g / litre of water 	
Main field	 Five Sprays with Eco-neem 1 % at 15, 25, 45, 65 and cartaphydrochlorie 4%G @ 1000g a.i/ha at 80 DAT Installation of pheromone traps Six releases of <i>Trichogramma japonicum</i> for stem borer and <i>T chilonis</i> for leaf folder at weekly interval 	Sprayed with Chlorantanilipole, flubendiamide, lambda- cyhalothrin and streptomycin at 30, 60, 75 and at 95 DAT

Incidence of dead hearts caused by stem borer was low in IPM plot throughout the crop growth period while it crossed ETL in FP plot starting from 25 DAT and maximum damage was found at 25 DAT (22.7% DH) while white ears were high in FP plot at pre-harvest (31.5% WE). High whorl maggot incidence was reported at 25 DAT in both IPM (17% WMDL) and FP plots (31.3% WMDL) but later it got reduced due to appropriate IPM interventions. Leaf folder incidence was found low in both the treatments while case worm damage was high at 25 DAT in both the plots (**Table 2.4.4**). Blue beetle damage was low in IPM plot (8.1% BBDL) while it was very high in FP plot (30.4% BBDL). Grain yield was high in IPM plot resulting in higher gross returns and better BC ratio (3.45) compared to FP plot (**Table 2.4.4**).

Table 2.4.4 Pest incidence, grain yield and BC ratio in IPMs at Pattambi, Rabi 2021-22

Treatments	% DH	% WE	% SS	% LFDL	% WMDL	% CWDL	% BBDL
Treatments	25 DAT	Pre har	25 DAT	70 DAT	25 DAT	25 DAT	25 DAT
IPM	0.0 ± 0.0	11.5 ± 1.0	23.5 ± 6.3	5.4 ± 0.6	17.0 ± 4.3	25.7 ± 3.5	8.1 ± 1.6
FP	22.7 ± 4.3	31.5 ± 2.0	57.8 ± 1.3	7.6 ± 0.4	31.3 ± 1.6	24.5 ± 1.7	30.4 ± 3.7
Treatments	Yield (Q/ ha)	Gross Returns (Rs.)	Cost of cultivation (Rs.)	Net Returns (Rs.)	BC Ratio		
IPM	8100 ± 287	226800	65675	161125	3.45		
FP	7305 ± 304	204540	97000	107540	2.11	Ī	

Price of Paddy = Rs.2800/q

Aduthurai: IPMs trial was conducted at three farmer's fields in three villages, viz., Sri S Shanmugam of Komal East village, Sri N Mathiyazhagan of Nallavur village, Nagapattinam district and Sri Vilwanathan of Nankudi village, Thanjavur district, Tamilnadu state. The details of package of practices followed are given below:

Practices followed in IPMs trial at Aduthurai, Rabi 2021-22

	IPM practices	Farmers practices
Area/ variety	1 ha; ADT 46	1 ha; ADT 46
Nursery	Seed treatment with carbandezim @ 2g / kg seed	
Main field	 Transplanting the seedlings at a spacing of 20 x 15 cm. Leaving alleyways of 30 cm after every 2 m or 10 rows. Fertilizers applied as per local recommended fertilizer dose. Application of Butachlor 1.5 kg a.i./ ha within one week after transplanting the crop. At 15 DAT, installed pheromone traps with 5 mg lure @ 8 traps/ha for stem borer monitoring One spray of Cartap hydrochloride 50 WP @ 600 g /ha at 60 DAT Application of Propiconazole 	 Five rounds of insecticides followed due to gall midge, stem borer, leaf folder and BPH incidence. Applied Thiamethoxam25 WG 100g/ha, Profenophos 20EC 1000ml/ha, Chlorantraniliprole 18.5 EC 100ml/ ha, Cartap hydro chloride 10kg/ha Applied Copper oxy chloride, Mancozeb+ carbendazim (saaf), Propiconozole

Incidence of stem borer, gall midge, leaf folder, whorl maggot, hispa, thrips, BPH, WBPH and GLH was observed in both IPM and FP plots in all the farmers' fields. Incidence of dead hearts and white ears crossed ETL and was significantly high in IPM plots as compared to FP plots in two farmer's fields while it was high in FP plots in Sri Vilwanathan farmer's field. (**Table 2.45**). Across farmers/villages, dead heart incidence was significantly high in IPM plots (30.9%) than in FP plots (22%). A similar trend was observed with respect to gall midge incidence also wherein the incidence was high in FP plots in two farmers' fields and low in the third farmer's field. Across the farmers, the incidence of gall midge and leaf folder was at par in

both IPM and FP plots. There is no significant difference in the pest incidence among the DATs. However, the incidence of whorl maggot, hispa, thrips, BPH, WBPH and GLH was low in both the treatments in all the farmers' fields. Grain yields were high in IPM plots resulting in higher gross returns and a better BC ratio (1.45) compared to the FP plot (**Table 2.4.6**).

Table 2.4.5 Pest incidence in IPMs trial at Aduthurai. Rabi 2021 -22

Name of the Farmer	Treatments	%DH/WE	% SS	% LFDL
F1 - Sri S Shanmugam	IPM	44.2(6.2)a	32.2(4.9)a	16.4(3.9)a
F1 - 311 3 Shaninugani	FP	24.8(4.6)b	11.7(3.2)a	2.6(1.6)b
LSD (0.05, 30	6df)	1.20	1.91	0.95
F2 - Sri N Mathiyazhagan	IPM	29.2(5.1)a	38.2(5.8)a	11.8(3.3)a
FZ - SIT N Wathiyazhagan	FP	15.6(3.7)b	22.7(4.6)a	12.6(3.3)a
LSD (0.05, 30	6df)	0.75	1.62	1.45
F3 - Sri Vilwanathan	IPM	19.2(4.0)b	9.0(2.7)b	5.0(2.1)b
F3 - SII VIIWaliatiiali	FP	25.7(5.0)a	35.0(5.8)a	12.1(3.3)a
LSD (0.05, 30	6df)	0.79	1.22	1.14
Treatment	S			
T1 = IPM		30.9(5.1)a	26.5(4.5)a	11.0(3.1)a
T2 = FP		22.0(4.4)b	23.1(4.5)a	9.1(2.7)a
LSD (0.05,10	8df)	0.53	0.89	0.64
DAT	•			
D1 = 29 DA	ΛT	23.6(4.5)a	23.0(4.4)a	
D2 = 43 DA	ΛT	29.4(5.0)a	27.0(4.6)a	8.4(2.8)a
D3 = 57 DA	D3 = 57 DAT		24.4(4.5)a	11.8(3.1)a
D4 = 64 DA	ΛT	26.9(4.9)a	. ,	, ,
D5 = Pre h	ar	23.1(4.3)a		
LSD (0.05,1	08)	0.83	1.09	0.64

Means followed by the same letter in a column are not significantly different; Values in parenthesis are square-root transformed values

Table 2.4.6 Returns and BC ratio in IPMs trial at Aduthurai, Rabi 2021 -22

Treatments	Yield (q/ ha)	Gross returns (Rs.)	Cost of cultivation (Rs.)	Net returns (Rs.)	BC ratio
IPM	56.56	105202	72388	32814	1.45
FP	51.4	95604	90450	5154	1.06

Price of Paddy = Rs. 1860/q

Karjat: IPMs trial was conducted in three farmer's fields, *viz.*, Sri Gajanan Masane, Sri Jagdish Masne and Sri Dhaneshwar Masne's fields of Aambot village, Karjat. The package of practices followed in both IPM and FP plots is given below:

Practices followed by three farmers in IPMs trial at Kariat. Rabi 2021-22

	IPM practices	Farmers practices
Area	1 acre	1 acre
Varieties	F1- Sri Gajanan Masane – Karjat 184 F2 - Sri Jagdish Masne - Karjat 3 F3- Sri Dhaneshwar Masne - Karjat 3	
Main field	 Seed treatment with carbendazim @ 10 g/ 10 kg seed Raised bed 3x1m treated with rice husk (hull) ash @3kg/bed 	Land burned with waste materials
	 Line sowing at a spacing of 20 cm Application of FYM 4 T, Suphala 215 Kg, Urea 87 Kg 2-3 seedlings transplanted at a spacing 20 x15 cm. 	 Seed broadcasted Application of FYM 2 T, Urea 180 kg, Suphala 75 kg

- Alleyways of 40cm left after every 10 rows
- Bispyribasodium 250ml/ha (Nomini gold).
- Pheromone traps @ 8 / acre
- Use of bird perches in the field
- Use Vaibhav sickle for harvesting
- Application of Cartap hydrochloride @ 18 kg/ha (one application)
- 4-5 seedlings transplanted randomly
- Hand weeding once
- Phorate 10 kg/ha (two applications)

A low incidence of stem borer and leaf folder was reported in all three farmer's fields in both IPM and FP plots. Grain yield was significantly high in IPM plots than in FP plots in all three farmer's fields resulting in higher gross returns and higher BC ratio (**Table 2.4.7**).

Table 2.4.7 Insect pest incidence in IPMs trial at Karjat, Rabi 2021-22

		% DH	% LFDL	Yield	Gross	Cost of	Net	
Farmer Name	Treatments	43 DAT	43 DAT	Kg/ha	Returns (Rs.)	cultivation (Rs.)	Returns (Rs.)	BC ratio
F1 = Sri Gajanan	IPM	6.7 ± 0.6	2.2 ± 0.6	3400 ± 13	68000	49787	18213	1.37
Masane	FP	8.1 ± 0.4	3.6 ± 0.8	2901 ± 19	58020	51450	6570	1.13
F2 = Sri Jagdish	IPM	8.2 ± 0.7	2.4 ± 0.3	3348 ± 27	66960	49787	17173	1.34
Masne	FP	9.0 ± 0.7	2.4 ± 0.2	2800 ± 64	56000	49800	6200	1.12
F3 = Sri	IPM	9.1 ± 0.9	1.8 ± 0.4	3499 ± 19	69980	49787	20193	1.41
Dhaneshwar Masne	FP	10.1 ± 0.8	2.5 ± 0.4	2900 ± 24	58000	51800	6200	1.12

Price of Paddy = Rs. 2000/g

Integrated Pest Management special (IPMs) trial was conducted at five locations in ten farmer's fields during Rabi 2021-22. Incidence of stem borer, leaf folder, gall midge, hispa, whorl maggot, BPH and WBPH was observed in both IPM and FP plots across locations. Dead heart incidence crossed ETL at Pattambi (22.7%) in FP plots alone while it crossed ETL in IPM (30.9%) and FP plots (22.0%) at Aduthurai. Incidence of gall midge was very high at Pattambi in both IPM (23.5%) and FP plots (57.8%) while at Aduthurai, it was high in IPM plots in two farmer's fields (32.2-38.2% SS) and high in FP plot in one farmer field (35% SS). The incidence of whorl maggot (31.3% WMDL), caseworm (24.5% CWDL) and blue beetle (30.4% BBDL) was high in FP plots as compared to IPM plots. Across the locations, gross returns were high in IPM plots due to the high grain yield and low cost of cultivation resulting in a high BC ratio.

Appendix-I

IIRR headquarters, Hyderabad: Drs. V. Jhansi Lakshmi, A. P. Padmakumari, Chitra Shanker, Ch. Padmavathi and Y. Sridhar.

Cooperating centres

SI. No.	State	Location	Code	Name of the cooperator, Designation							
1		Bapatla*	BPT	Dr. N. Sambasiva Rao, .Sr. Scientist (Entomology)							
2	A sa alla sa a Dana al a a la	Maruteru	MTU	Dr. A.D.V.S.L.P. Anand Kumar, Scientist (Entomology)							
3	Andhra Pradesh	Nellore*	NLR	Dr. I. Paramasiva Reddy, Scientist (Entomology)							
4		Ragolu*	RGL	Dr. UdayaBabu, Scientist, Entomology							
5	Assam	Titabar	TTB	Dr. Mayuri Baruah, Junior Scientist, (Entomology)							
6	Dilean	Pusa	PSA	Dr. Abbas Ahmed, Scientist (Entomology)							
7	Bihar	Ambikapur *	ABP	Dr. Kanhaiyalal Painkra, Scientist (Entomology)							
8	Chattianarh	Jagdalpur	JDP	Dr. N. C. Mandawi, Scientist, (Entomology)							
9	Chattisgarh	Raipur	RPR	Dr. Sanjay Sharma, Pr. Scientist (Entomology)							
10	New Delhi	New Delhi*	NDL	Dr. S. Rajna, Scientist (Entomology)							
11	Jharkhand	Ranchi	RCI	Dr. Binay Kumar, Jr. Scientist, (Entomology)							
12	Cuianat	Nawagam	NWG	Dr. Sanju Thorat, Asst. Res. Scientist							
13	Gujarat	Navsari	NVS	Dr. Parth B. Patel, Asst. Res. Scientist (Entomology)							
14	Haryana	Kaul	KUL	Dr. Sumit Saini, Asst. Scientist (Entomology)							
15	H.P	Malan	MLN	Dr. Chhavi, SMS, Entomology							
16	J & K	Chatha	CHT	Dr. Rajan Salalia, Jr. Scientist (Entomology)							
17	Jak	Khudwani	KHD	Dr. Basheer Ahmed , Professor, (Entomology)							
18		Brahmavar	BRM	Dr. Revanna Revannavar, Entomologist							
19	Karnataka	Gangavathi	GNV	Dr. Sujay Hurali, Scientist (Entomology)							
20		Mandya	MND	Dr. Kitturmath, Entomologist							
21	Kerala	Moncompu	MNC	Dr. Jyoti Sara Jacob, Asst. Prof. (Entomology)							
22	Nerala	Pattambi	PTB	Dr. K. Karthikeyan, Prof. of Entomology							
23	M.P	Rewa	REW	No Entomologist-No trials allotted							
24	- Maharashtra	Karjat	KJT	Dr. Vinayak Jalgaonkar, Entomologist							
25	Manarasilia	Sakoli	SKL	No Entomologist, Trials were conducted							
26	Manipur	Wangbal	WBL	No Entomologist-No trials allotted							
27	Odisha	Cuttack*	CTC	Dr. P.C Rath, Principal Scientist (Entomology)							
28	Ouisna	Chiplima	CHP	Dr. Atanu Seni, Jr Entomologist							
29	Punjab	Ludhiana	LDN	Dr. P. S. Sarao, Principal Scientist							
30	Tamil Nadu	Aduthurai	ADT	Dr. P. Anandhi, Asst. Professor, (Entomology)							
31	Tamil Nadu	Coimbatore	CBT	Dr. Sheela Venugopal, Asst. Professor (Entomology.)							
32	Tripura	Arundhutinagar*	AND	01,							
33		Jagtial*	JGT								
34	Telangana	Rajendranagar	RNR								
35		Warangal	WGL	Dr. R. Shravan Kumar, Scientist (Ento)							
36	Union Territory	Karaikal*	KRK								
37	Official refillory	Kurumbapet	KBP	. (0							
38	Uttarakhand	Pantnagar	PNT	3,7 (1 037							
39	Uttar Pradesh	Masodha	Dr. Sanjai Rajpoot, Entomologist								
40	Ullai Fiauesii	Ghaghraghat	GGT	- do -							
41	West Bengal	Chinsurah	CHN	Dr. Sitesh Chatterjee, Entomologist							

^{* -} Voluntary Centre

Appendix II

State	Location	Rabi 20	21-22	Kharif	2022			
State		Allotted	Recd.	Allotted	Recd.			
Andhra Pradesh	Bapatla *	0	0	3	3			
	Maruteru	6	5	13	13			
	Nellore *	0	0	7	7			
	Ragolu *	0	0	4	4			
Assam	Titabar	0	0	11	11			
Bihar	Pusa	0	0	7	6			
Chattisgarh	Ambikapur *	0	0	8	8			
	Jagdalpur	0	0	12	12			
	Raipur	1	1	13	13			
Gujarat	Navsari	0	0	9	9			
•	Nawagam	0	0	9	9			
Haryana	Kaul	0	0	5	5			
Himachal Pradesh	Malan	0	0	8	7			
Jammu & Kashmir	Chatha	0	0	6	6			
	Khudwani	0	0	5	5			
Jharkhand	Ranchi	0	0	5	4			
Karnataka	Brahmavar	0	0	5	5			
	Gangavathi	0	0	14	14			
	Mandya	0	0	10	10			
Kerala	Moncompu	1	1	11	11			
Troidia	Pattambi	4	4	11	11			
Madhya Pradesh	Rewa	0	0	0	0			
Maharashtra	Karjat	2	2	7	7			
Manaraontra	Sakoli	0	0	4	4			
Manipur	Wangbal	0	0	0	0			
New Delhi	New Delhi *	0	0	4	4			
Odisha	Cuttack *	3	2	7	5			
Odioria	Chiplima	1	1	10	9			
Puducherry	Karaikal *	0	0	3	3			
1 dadonony	Kurumbapet	0	0	0	0			
Punjab	Ludhiana	0	0	14	14			
Tamil Nadu	Aduthurai	3	3	12	12			
Tarriii Nada	Coimbatore	1	1	12	12			
Telangana State	Jagtial *	0	0	6	5			
Telanguna etate	Rajendranagar		2 2 11		11			
	Warangal		0 0 11		11			
Tripura	Arundhutinagar *	0 0		4	3			
Uttar Pradesh	Ghaghraghat	0	0	6	6			
טונמו דומעכטוו	Masodha	0	0	5	5			
Uttarakhand	Pantnagar	0	0	12	12			
	Chinsurah	4	1	12	8			
West Bengal								
Total trials in funded and vo		28	23	314 304 96.8				
% Receipt of data for <i>kharif</i> and Overall % Receipt of Data	LULLOX I dUI LUL I - LL	82.1 96.8 89.5						

Appendix-III

		List	of Abb	reviations		
a.i.	:	Active ingredient		LF	:	Leaf folder
ADL	:	Average damaged leaves		MB	:	Mirid bug
AT		After treatment		MLB	:	Mealy bug
Av.No./AN	:	Average number		N.n	:	Nephotettix nigropictus
AW	:	Army worm		N.v	:	Nephotettix virescens
BB	:	Blue beetle		N.vi	:	Nezara viridula
BCR	:	Benefit cost ratio		No./10h	:	Number per 10 hills
BPH	:	Brown planthopper		NP	:	Net profit
ВТ		Before treatment		NPT	:	Number of promising tests
Cocc.	:	Coccinellids		NT	:	Not tested
CPP	:	Cost of plant protection		PH	:	Planthoppers
CW	:	Case worm		PLD	:	Promising level of damage
DAT/DT	:	Days after transplanting		PM	:	Panicle Mite
DG	:	Damaged grain		PSB	:	Pink stem borer
DH	:	Dead hearts		RF	:	Rainfall
DHB	:	Dark Headed borer		RH	:	Relative humidity
DL	:	Damaged leaves		RT	:	Rice thrips
DP	:	Damaged plants		SBDH	:	Stem borer dead heart
DS	:	Damage score		SBWE	:	Stem borer white ear
FR	:	Field reaction		SW		Standard week
RGB	:	Rice Gundhi bug		SS	:	Silver shoots
GH	:	Greenhouse reaction		SSB	:	Striped Stem borer
GHC	:	Green horned caterpillar		SSH	:	Sunshine hours
GLH	:	Green leafhopper		WB	:	Water bug
GMB	:	Gall midge biotype		WBPH	:	White-backed planthopper
Gr. H	:	Grasshopper		WE	:	White ears
GSB	:	Green stink bug		WLH	:	White leafhopper
НВ	:	Hopper burn		WM	:	Whorl maggot
HBP	:	Hopper burnt plants		WSB	:	White Stem borer
IOC	:	Increase over control		YSB	:	Yellow stem borer
IPD	:	Infested Plants Dead		ZZLH	:	Zigzag leafhopper

ACKNOWLEDGEMENTS

Our thanks are due, to the scientists located at different cooperating centres for the conduct of trials as a part of the Coordinated Entomology Program. Thanks are also due to Dr. B. Sailaja, Principal Scientist and Dr. Santosha Rathod, Scientist, Agril. Statistics, for helping in the statistical analysis of data. Thanks are due, to Dr. N. Somasekhar, Principal Scientist Nematology and Dr. V. Chinna Babu Naik, Sr. Scientist Entomology section for their cooperation and suggestions and Sri. P. M. Chirutkar and Sri. K. Shravan Kumar, Technical Officers, Mr. Patil Sukesh YP-1, Mrs Srichandana JRF and G Maniratnam YP1 for their efforts in conduct of the trials and/or preparation of the report at IIRR. Special thanks are due, to Sri. T. Venkaiah, Tech Officer, for data entry and analysis in SAS and Sri. Amudhan Srinivasan, Asst. Chief Technical Officer, Entomology Section, for support in conduct of the trials, preparation and printing of the report.

PLANT PATHOLOGY

Correct citation: ICAR-Indian Institute of Rice Research, 2023 Progress Report 2022, Vol II, Entomology and Pathology All India Coordinated Research Programme on Rice ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad-500 030, TS, India

AICRIP Progress Report- Plant Pathology 2022

	CONTENT	Page No.
	SUMMARY	3.1-3.7
	INTRODUCTION	3.8
I	HOST PLANT RESISTANCE	
	SCREENING NURSERIES	
	Leaf blast	3.10-3.22
	Neck blast	3.23-3.30
	Sheath blight	3.31-3.41
	Brown spot	3.42-3.51
	Sheath rot	3.52-3.59
	Bacterial blight	3.60-3.70
	Rice tungro disease	3.71-3.75
	Glume discolouration	3.76-3.79
	False smut	3.80-3.81
	Multiple Disease Resistance	3.82-3.85
II	FIELD MONITORING OF VIRULENCES	
	1. Pyricularia oryzae	3.86-3.89
	2. Xanthomonas oryzae pv. oryzae	3.90-3.93
III	DISEASE OBSERVATION NURSERY	3.94-3.104
IV	DISEASE MANAGEMENT TRIALS	
	1. Evaluation of combination fungicides against location specific diseases	3.105-3.126
	2. Evaluation of Bio-control formulations against fungal diseases	3.127-3.137
	3. Integrated pest management (Special trial)	3.138-3.140
	4. Special trial on yield loss assessment due to major rice diseases	3.141-3.147
	5. Special Screening Trial on False smut Screening	3.148
	6. Special Screening Trial on Brown spot Screening	3.149-3.150
V	Report of AICRPR - Rainfed Trials - 2022-2023	3.151
VI	Report of AICRPR – Basmati Trials - 2022-2023	3.153
	Annexure	
	I. Weather data of Plant Pathology Coordinated locations during <i>Kharif</i> , 2022	3.154
	II. Details on the Plant Pathology Coordinated Centres	3.162
	III. Abbreviations	3.164

3. PATHOLOGY

SUMMARY

The All India Coordinated Rice Pathology Program of the ICAR-Indian Rice Research Institute is an example of effective linkage and testing mechanism to assess the advanced breeding lines over a wide range of climatic and disease epidemic conditions and to identify broad spectrum of resistance to major rice diseases. This also helps in developing need-based management options for controlling major diseases of rice. **During 2022, a total of 16 trials were conducted at 51 locations on host plant resistance, field monitoring of virulence of major pathogens and disease management methods.** The details on screening nurseries and disease management trials proposed and conducted at various test locations are given in Table 1. The summary of observations is given below. Detailed data on extensive screening of diverse genotypes are furnished in a separate report entitled 'National Screening Nurseries, 2022'.

1. HOST PLANT RESISTANCE (NSN-1, NSN-2, NSN-H, NHSN and DSN)

***** LEAF BLAST

The entries for leaf blast resistance were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN and DSN at 26, 19, 12, 24 and 24 centres respectively. None of the centres showed very high (LSI>7) across all nursery; few centres recorded high (LSI 6-7) disease pressure. The disease pressure was moderate in most of the locations; however, at few centres it was low. Across all the nurseries, Patna, Maruteru and Wangbal showed low disease pressure (LSI<3). The entries that exhibited low over all disease score and high promising index were IET# 30022, 30000, 30051, 29411, 30020, 28959, 30037, 28128, 29409, 30003, 28997, 30004, 29396, 30233, 29446 and 30013 under NSN-1; IET # 30683, 30659, 30833, 30897, 31063, 31004, 30943, 30748, 31051, 30720, 31046, 31079, 31048, 31076, 31050, 30764 and 31011 under NSN-2. None of the entries recorded resistant reaction across the locations under NSN-H; however, a few entries viz., IET # 30486, 30483, 28895, 28882, 30503, 29654, 29636, 30514, 30531, 30507 and 29635 were found promising. The promising entries under NHSN included IET #30577, 30594, 30585, 30567, 30568, 29722, 30593, 30572, 30569, 30560, 30582, 30573, 30631, 30578 and 30579. The donors viz., RNR 37909, MS-ISM-DIG-8, RP-Bio Patho-4, CB 18532, CGR 19-68, RNR 37998, AE 939, CB MSP9 007, UB 1066, CB MSP9 003, CB MSP9 006, RP Patho- 11, MS-ISM-DIG-10, RP-Bio Patho-3, RP-Bio Patho-9, VP-R111-SHB, CB 18536, CB MSP9 005, CB 19127 and RNR 37993were reported promising under DSN.

❖ NECK BLAST

The entries were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN and DSN at 7, 4, 5, 8 and 8 centers respectively. In most of the centres the screening was carried out under natural infection condition except at Rajendranagar and Nellore, where artificial method of inoculation was followed. In majority of the locations the disease pressure was moderate to high, which was good enough for selection of the best entries. The entries that exhibited low over all disease score and high promising index were IET# 29576, 30037, 29430, 30200, 28959, 29743, 29825, 29891, 30207, 29361, 29826, 30021, 29405, 29446, 28950, 30083, 30072, 29004, 29000, 29943, 28965 and 30233 under NSN-1; IET# 30684, 30692, 30831,

29990, 30881, 31051, 30763, 30674, 30748, 30856, 31050, 31054, 30707, 30752, 31141, 31141, 30660, 30673, 30676, 30833, 30844, 30861, 30889, 31077, 30768, 30772, 30786, 29952, 30750, 30753, 31152, 30650 and 30667 under NSN-2. The entries with IET No. 30512, 30507, 30530, 30485, 30515, 30488, 30493, 30525, 30529, 30511, 28880, 30502, 29636, 30531, 30509, 29639, 28915 and 28914 under NSN-H; IET # 30558, 30555, 30569, 30587, 30576, 29722, 30620, 30556 and 30578 under NHSN were found to be promising against neck blast disease with low diseases score across the locations. Under DSN, donors *viz.*, RP-Bio Patho-3, MS-68-3, VP-R262-SHB, MS-68-3-7, VP-R243-SHB, VP-D9-SHB, AE 939, Pusa 1824-17-4-3, Pusa 1824-17-4-8, KNM 14282, RNR 37909, VP-R45-SHB, VP-R104-SHB, VP-R260-SHB, CL-442, OYT ADW-259, VP-R294-SHB, KNM 12346, VP-WP-SHB, RP-Bio Patho-5, VP-R126-SHB, RP Bio Patho-7, VP-R36-SHB, BE 683, MTU 1265 and RP Bio Patho-8 were found to be promising for neck blast disease.

❖ SHEATH BLIGHT

The entries were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN, and DSN at 22, 20, 3, 22 and 21 locations, respectively. In the majority of the locations, the disease pressure was moderate to high. None of the entries were found resistant (SI≤3) against sheath blight in all the nurseries during *Kharif*-2022. The promising entries to sheath blight were IET Nos., 30078, 29351, 29891, 29935, 30093, 30106, and 29549 in NSN-1-2022; IET Nos., 30805, 31087, 31114, 30867, 30945, 30783, 30844, 30973, 30977, 30881, 30976, 30891 and 29805 in NSN-2-2022; IET Nos., 28896, 30499 and 29654 in NSN-H-2022; IET Nos., 29616, 30575, 30621, 30617, 30602, 30605, 30603, 30625, 30609, 29758 and 30623 in NHSN-2022; and designated entries *viz.*, VP-R36, 19082, MS-ISM-DIG-1, VP-D5, VP-R298, VP-D9, VP-R294, UB 1066, VP-R297, VP-R262, VP-R109, VP-R158, VP-R134, CB17135, MS-ISM-DIG-4, RP-Bio Patho-5, CO52, KNM 12346, 19273, CB18586 and CB17533 in DSN-2022.

SPOT

The entries were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN and DSN at 17, 11, 5, 14 and 14 centers respectively against brown spot disease across India. In most of the centres the screening was carried out under natural infection condition except at Bankura, Chinsurah, IIRR, Gangavathi, Ludhiana and Pusa; where screening was carried out artificially by spraying spore suspension. In majority of the centres the brown spot pressure was moderate to high; and at Gangavathi centre it was very high (LSI >7) across all the nurseries. None of entries found resistant to brown spot (SI<4) across all nurseries. However, the promising entries with moderate resistance (4-6) included IET # 30233, 29539, 30824, 30261, 30695, 28821, 28544, 30097, 30230, 28128, 30830, 30697, 28353, 30823, 28960 and 30703 under NSN-1; IET #30767, 30848, 31044, 31056, 30801, 31021, 31068, 31075, 30752, 30852, 31153, 30753, 30772, 31059, 30856, 31076, 30799, 30831, 31014, 31079 and 30774 under NSN-2. The entries with IET No. 30530, 28887, 30527, 30515, 30513, 30507, 30524, 30526, 30487, 30512, 30525 and 30528 under NSN-H; IET#30571, 30620, 30562, 30619, 30590, 30591, 30613, 30586, 30616, 30561, 30566 and 30567 under NHSN and KNM 12346, CB MSP9 004, CB 17634, CB MSP9 007, VP-R40-SHB, CB MSP9 006, VP-R297-SHB, CB MSP9 003, KNM 14382, AM 773, CB 19107, CB 16710, CB 17135, VP-R243-SHB, 19198, CB MSP9 009, RP Bio Patho-4, NLR-95, NLR 3415, KNM 14445 and CL-442 under DSN were found promising against brown spot disease.

SHEATH ROT

The entries under NSN-1(338), NSN-2(571), NSN-Hills (2), NHSN (112) and DSN (229) were screened against sheath rot at 14, 8, 2, 14 and 12 locations, respectively. Screening for sheath rot was conducted under natural infection conditions at most of the locations except at Chinsurah, Coimbattore, Navasari, Pusa, Raipur, Titabar and Rajendranagar; where pathogen was artificially inoculated to screen the entries. The disease pressure was moderate to high at most of the locations across the nurseries. Some of the highly promising entries scored less than 3 were IET # 31032 in NSN-2; 19208 in DSN and none found in NSN1, NHSN.

*** GLUME DISCOLOURATION**

Glume discolouration (GD) was observed at four locations *viz.*, Chatha, Lonavala, Navasari and Nawagam during *kharif* 2022. Some of the promising entries were: IET nos 30008, 29246, 29212, 29360 and 29943 in NSN 1; 30878, 31031, 31032, 31035, 31038 and 31079 in NSN2; 30615, 30558, 30624, 30563, 30565, 30580, 30585, 30587 and 30631 in NHSN and Pusa 2070-10-2, CB16806, CB16807, MS-68-3, MS-68-3-7, KNM 12346, ARC5791, CB18586, RP-Patho-10, CB17135, CB18527, CB18536, CB17533, CB17529, CB MSP9 007, IET19273, RP-Patho-5, RP-Bio Patho-9, in DSN.

* RICE TUNGRO DISEASE

The entries in NSN-1, NSN-2, NHSN and DSN were evaluated at 2 locations for rice tungro virus disease. The promising entries identified in different nurseries were: IET 30020, IET 29411, IET 29410, IET 29256, IET 30201, IET 29947, in NSN-1; IET Nos 30850, 30851, 30866, 31017, 31042, 31082, 30902, 30999, 30922, in NSN 2; IET Nos IET 30498, IET 30499, IET 30529, IET 30531, IET 30510, IET 30511, VL Dhan 65, Vivekdhan 86 and Shalimar Rice-3 in NSNH and IET nos 30606, 30562, 30566, 30601, 30603, 30611, 30613, 30614, in NHSN and CB18532, IET19273, VP-R35-SHB, VP-D4-SHB, MTU 1297, CGR-18-65 and CGR-18-65 in DSN.

❖ BACTERIAL BLIGHT

The test entries and various checks in different bacterial blight screening nurseries viz., NSN-1, NSN-2, NSN-Hills, NHSN and DSN were evaluated at 28, 21, 4, 23 and 25 locations, respectively. The number of entries including checks in different nurseries was 338 in NSN1, 571 in NSN-2, 114 in NSN-Hills, 112 in NHSN and 229 in DSN. Some of the promising entries against bacterial blight in different nursery were IET # 29861, 29748, 30827, 30037, 29214, 29000, 30241, 29576, 29574, 29935, 30827, 30830, 28997, 29878, 29549, 29714, 30240, 30828, 28524, 29539, 30822 and 30116 in NSN1; IET # 30835, 30971, 30984, 30755, 31140, 30819, 30881, 30831, 30886, 30740, 30880 30772, 30983, 30753, 30945, 30756, 31110, 30878, 30817 and 30968 in NSN2; IET # 30519, 28206 (R), 30502, 28896, 28907, 28217, 30518, 28884, 29640 and 30508 in NSN Hills; IET # 30603, 30620, 30605, 30582, 30577, 30585, 30593, 30594, 30578, 30602, 30615, 30575 and 30610 in NHSN and VP-R40-SHB, MS-ISM-DIG-3, VP-R297-SHB, VP-R12-SHB, MS-ISM-DIG-1, VP-R260-SHB, RP-Bio Patho-3, MS-ISM-DIG-4, RP-Bio Patho-5, VP-R256-SHB, VP-R44-SHB, VP-R157-SHB, VP-R35-SHB, VP-R36-SHB, VP-R36-SHB,

*** MULTIPLE DISEASE RESISTANT LINES**

Among the entries tested across the locations, total of 91 entries found moderately resistant to minimum of two and maximum of four diseases. A total of 13, 14, 14, 20 and 30 entries were identified with multiple disease resistance (for 2 or more diseases) in NSN 1, NSN2, NSN-H, NHSN and DSN screening nurseries respectively. The entries IET# 29411 (MR to LB, SHR & RTD), 30020 (MR to LB, SHR & RTD) and 30233 (MR to LB, NB & BS) showed moderate reaction for three diseases in NSN-1. IET# 30722 showed high resistance reaction to NB, MR to BS and SHR in NSN-2. IET# 30531 (Resistant to RTD & MR to LB, NB&SHB) showed resistant or moderate resistant reaction to four diseases and 30507 (Resistant to NB & MR to LB&BS) was showed resistant or moderate resistant reaction to three diseases in NSN-H. Two entries IET# 30578 (MR to LB, NB&SHR) and 30603 (MR to SHB, SHR &RTD) found MR to three different diseases in NHSN. In DSN, five donors exhibited resistant or moderate reaction to three diseases and that includes 19273 (MR to SHB, SHR&RTD), CB MSP9 006 (MR to LB, BS&SHR), KNM 12346 (Resistant to NB and MR to SHB&BS), UB 1066 (MR to LB, SHB&SHR) and VP-R36-SHB (Resistant to NB and MR to SHB&SHR).

II. FIELD MONITORING OF VIRULENCE

1. Pyricularia oryzae

The nursery included 39 cultivars consisting of near isogenic lines, international differentials, donors and commercial cultivars. The experiment was conducted at 24 locations during the crop season to monitor the blast reaction on different genotypes. Disease pressure was high at Cuttack (LSI 6.5) and Gudalur (LSI 6.3). It was moderate (LSI 5.8 to 5.1) at Gagharghat, Lonavala, Navasari, Jagtial, Khudwani and Karjat. Among all the genotypes, Tetep, RP Bio Path-3, Tadukan and Raminad str-3, were resistant across the locations with SI 3.1, 3.3, 3.4 and 3.4 respectively. However, RP Bio Patho 3 possessing Pi2, showed susceptible reaction at 7 locations; Tadukan showed susceptible reaction at 8 locations and Raminad str-3 showed susceptible reaction at 5 locations as against 2 locations during 2021. RP Bio Patho-4 showed susceptible reaction at 10 locations. The susceptible checks like HR-12 and Co-39 are showing susceptible reaction at most of the locations. However, HR-12 recorded resistant reaction at 5 locations. Similarly, Co-39 also recorded low disease score at Karjat, Mugad and Maruteru. The resistant check Rasi was highly susceptible at Cuttack, Gagharghat, Navasari, Jarjat, Almora and Jagdalpur. Similarly, IR 64 was showing susceptible reaction at Cuttack, Gagharghat and New Delhi. The reaction pattern of genotypes at all the locations was grouped into eight major groups at 30% dissimilarity coefficient. The reaction pattern at Cuttack, Gudalur, Lonovala, Ghaghraghat, Navasari and Karjat are distinct form the other isolates. The isolate from Jagityal and Khudhwani are grouped in same cluster. The other 16 isolates formed a major cluster showing same kind of virulence pattern.

2. Xanthomonas oryzae pv. oryzae

Trial on monitoring virulence of bacterial blight (BB) pathogen, *Xanthomonas oryzae* pv. oryzae (Xoo) was conducted at 25 locations. The rice differentials used in this trial consisted of eleven near isogenic lines (IRBB lines) possessing different single BB resistant genes in the genetic background of rice cultivar IR 24. Susceptible check variety, TN1 and resistant check variety Improved Samba Mahsuri was also included in the trial. Most of the differentials possessing single bacterial blight resistance genes like Xa1, Xa3, Xa4, xa5, Xa7, xa8, Xa10, Xa11 and Xa14 were susceptible at most of the locations. BB resistance gene xa13 was

susceptible in 8 locations while Xa21 was susceptible in 11 locations. Based on their virulence, the isolates were grouped into high, moderate and low virulence groups. The isolate from Maruteru formed a distinct cluster. Other highly virulent category isolates viz., IIRR, Chinsurah, Chiplima, Raipur and Pattambi grouped together or nearby. Low virulent isolate viz., Karjat, Moncompu, Rajendranagar and Warangal grouped together. Most of the isolates from moderately virulent category grouped together.

III. DISEASE OBSERVATION NURSERY

The trial of disease observation nursery (DON) was proposed to be conducted in 11 locations, but actually conducted at 10 locations with different sowing dates viz., early, normal and late with respect to the respective locations with an aim to estimate the effect of such varied sowing/planting dates on the occurrence and severity of the disease in the respective endemic regions. Disease development is generally known to depend on the availability of susceptible host, virulent pathogen and prevalence of favorable weather condition. The trial was proposed at 11 locations Bankura, Chinsurah, Gangavathi, Kaul, Malan, Mandya, Maruteru, Moncompu, Nawagam, Nellore, Pusa and Raipur. The data however was received from only 10 centres and Nellore centre did not send the data and Gangavathi send the data even though not proposed this trial for this centre. The incidence of leaf blast was found to be relatively less in this year when compared to the previous year. Further the incidence was also more in the late sown crops than when compared to the early and normal sown crops except for Raipur centre. The centre Maruteru has reported the highest incidence of BLB in the normal and late sown crops (67.35% and 52.07 % DS respectively) when compared to the early sown crops (24.71% DS). In general, the incidence of sheath blight was found to be more in the early sown crops when compared to the normal and late sown crops. Maruteru centre had the highest percent disease severity of sheath blight (67.41% DS at 110DAT) in the early sown crop among all the other centres and all the sowing periods. In Mocompu center, the severity of sheath blight was more in late sown crop (49.73% DS) compared to early (30.56% DS) and normal (37.50% DS) sown crops. Kaul centre has reported the incidence of Bakane, in the early sown crop and the variety PB1121 was found to be more susceptible than CSR-30. In Nawagam, sheath rot incidence was more in late sown crops. In Malan, the blast incidence was more in late sown crop (33.75% PDI) when compared to normal (21.45% PDI) and early sown crop.

IV. DISEASE MANAGEMENT TRIALS

1. EVALUATION OF FUNGICIDES AGAINST LOCATION SPECIFIC DISEASES

A trial was conducted with the objective to identify an effective fungicidal molecule against rice diseases. The trail constituted with fungicidal molecules *viz.*, difenoconazole 25% EC, isoprothiolane 40% EC, kasugamycin 3% SL, kitazin 48% EC, propineb 70% WP, tebuconazole 25.9% EC and thifluzamide 24% SC. The fungicides were evaluated against leaf blast (ten locations), neck blast (ten locations), sheath blight (fourteen locations), sheath rot (six locations), brown spot (seven locations), grain discoloration (one location) and stem rot (one location).

Commercial products kitazin 48% EC (1.0 ml/L) and Tebuconazole 25.9% EC (1.5 ml/L) were found effective in minimizing the leaf blast at 51.4% and 43%, respectively, and increased the yield up to 32% and 40%, respectively. Isoprothiolane 40% EC (1.5 ml/L) was also found effective in minimising the leaf blast at 41% and increased the yield 38%.

Isoprothiolane 40% EC (1.5 ml/L) was also found effective in minimising the neck blast at 51% and increased the yield31%. Difenoconazole 25% EC (0.5 ml/L) (DS:33.8%) and Tebuconazole 25.9% EC (1.5 ml/L) (36.9%) were found effective in reducing sheath blight at 53% and 49%, respectively and increased the yield at 40% and 41%, respectively. Tebuconazole 25.9% EC (1.5 ml/L) and Difenoconazole 25% EC (0.5 ml/L) were found effective in reducing the sheath rot severity at 45% and 41%, and reducing the sheath rot incidence at 42% and 42%. Difenoconazole 25% EC (0.5 ml/L) was identified as the best molecule to reduce brown spot (60%) diseases and increased yield at 14%. Difenoconazole 25% EC (0.5 ml/L) showed broad spectrum activity against sheath blight, sheath rot, and brown spot. Tebuconazole 25.9% EC (1.5 ml/L) showed broad spectrum activity against sheath blight, sheath rot, brown spot and blast.

2. EVALUATION OF BIO-CONTROL FORMULATIONS AGAINST FUNGAL DISEASES

Among the different formulations tested viz., the liquid formulation was found to be better than the solid formulation. Similarly, the combination of bioagent formulation and fungicides were providing higher percent disease control and increased plant yield than when compared to the fungicide treatment alone. Among the different treatments overall for the management of the sheath blight disease, Moncompu reported the highest percentage control over the disease (DC) viz., 91.05% followed by IIRR (90.73) when applied with the liquid formulation of the bioagent as seed treatment followed by seedling dip @ 5g/l followed by Hexaconazole @ 2ml/l at tillering stage (T6). Regarding the plant yield, Maruteru centre reported the highest percent increase in grain yield over control (60.86%) when the plants were applied with bioagent as seed treatment followed by seedling dip @ 5g/l with liquid formulation followed by Hexaconazole @ 2ml/l at tillering stage (T6) followed by the treatment of bioagent as seed treatment followed by seedling dip @ 5g/l with solid formulation followed by Hexaconazole @ 2ml/l at tillering stage (T5). In the study of IDM against falsesmut disease using the bioagent T. asperellum Strain TAIK1, Karaikal centre reported the highest percent decrease in disease severity over control (91.80%) when the plant were treated with bioagent as seed treatment followed by seedling dip @ 5g/l with liquid formulation (T4) followed by the treatment bioagent as seed treatment followed by seedling dip @ 5g/l with solid formulation (T3).

3. INTEGRATED PEST MANAGEMENT (SPECIAL - IPM TRIAL)

The trial was conducted at four different zones *viz.*, Northern zone (Pantnagar, Kaul); Eastern zone (Chiplima, Masodha); Western zone (Navsari, Nawagam) and Southern zone (Aduthurai, Mandya). Disease severity of various diseases, recorded at weekly intervals was converted in to AUDPC values and compared. IPM practices against leaf blast were effective at Mandya, Masodha, Chiplima, Kaul and Jagdalpur compared to farmer's practices. With respect to neck blast, IPM practices were effective at Masoda and Jagdalpur. At Jagdalpur, Pantnagar and Kaul, IPM practices performed well compared to farmer practices against Sheath blight. IPM was effective against bacterial blight at Masodha, Jagdalpur and Navsari. Sheath rot disease was reduced effectively due to adoption of IPM practices at Navsari and Nawagam. Similarly, IPM practices effective against brown spot at Pantnagar and Chiplima.

4. SPECIAL TRIAL ON YIELD LOSS ASSESSMENT DUE TO MAJOR RICE DISEASES

In *Kharif* 2022, trial on yield losses due to major rice diseases such as leaf blast (4 locations), sheath blight (6 locations) and bacterial blight (5 locations) was conducted. Leaf blast percent disease index of 59.88, 46.15, 30.02, and 18.34% caused a yield reduction of 52.34, 38.36 and 19.66 and 0%. Sheath blight percent disease index of 68.53, 46.93, 36.51 and 7.36% caused a yield reduction of 46.18, 31.57, 14.80 and 0% from 100% inoculated (T1); 50% inoculated (T2) and 33% inoculated and uninoculated (T4) treatments respectively. Similarly, the BB percent disease index of 76.45, 56.64 and 45.49 and 16.43% caused a yield reduction of 23.26, 16.36, 15.84% and 0 from 100% inoculated (T1); 50% inoculated (T2) and 33% inoculated and uninoculated (T4) treatments respectively. Results from the present study revealed that leaf blast, sheath blight and bacterial blight severity significantly reduced the rice grain yield.

INTRODUCTION

The All-India Co-ordinated Rice Pathology Programme of Indian Institute of Rice Research (ICAR-IIRR) provides an effective linkage for collaboration among state agricultural universities, national institutes and Department of Agriculture, Agrochemical Industry and others. The objectives of the Programme are:

- To accelerate genetic improvement of rice for resistance against major diseases occurring in different ecosystems of the country.
- To provide a testing mechanism to assess the advanced breeding lines over a wide range of climatic, cultural, soil and disease epidemic conditions.
- To identify broad spectrum of resistance to major rice diseases.
- To monitor and evaluate the genetic variation of rice pathogens.
- To monitor the prevalence of diseases in the country.
- To develop need-based disease management practice.
- To identify production constraints in different ecosystems through Production Oriented Survey.

To achieve these objectives during 2022, a total of 16 trials were conducted at 51 locations on host plant resistance, field monitoring of virulence in major pathogens and disease management. Five national screening nurseries comprising of 1,364 entries of advanced breeding lines and new rice hybrids were evaluated for their reactions to major rice diseases at 49 locations.

The composition of the nurseries is as follows:

- National Screening Nursery 1 (NSN-1) 338 entries drawn from Advanced Variety Trials.
- ❖ National Screening Nursery 2 (NSN-2) 571 entries from Initial Variety Trials.
- National Screening Nursery-Hills (NSN-H) 114 entries from Advanced and Initial Varietal Trials.
- National Hybrid Screening Nursery (NHSN) 112 entries from Initial National Hybrid Rice Trials (HRT'S).
- ❖ Donor Screening Nursery (DSN) 229 entries from different centres.

The virulence patterns of blast and bacterial blight pathogens in the field were monitored, using differentials for respective diseases at disease endemic areas. The prevalence of the diseases was monitored in three sequentially sown disease observation nurseries laid-out in the endemic locations.

The disease management trials were conducted at hot-spot locations to evaluate the efficacy of new fungicides and commercially available combination fungicide formulations against major rice diseases. Production Oriented Survey (POS) was undertaken in 18 centres (16 states) to identify the production constraints in different rice growing ecosystems.

The weather conditions and location details are given in Annexure I to Annexure III. Out of 629 experiments proposed, data were received from 588 experiments of 16 trials indicating the good response with 93.48 % data receipt from the centres.

Table 1: Scientists involved in Pathology Coordinated Programme, *Kharif* 2022. ICAR-IIRR, Headquarters, Hyderabad- Dr. M. Srinivas Prasad, PI; Associates: Drs. G. S. Laha, D. Krishnaveni, C. Kannan, D. Ladhalakshmi, V. Prakasam, K. Basavaraj and G. S. Jasudasu

S.No	Location	Co-operators	Funded/	Exper	ments		
5.110	Location	Co-operators	Voluntary	Proposed	Conducted		
1	Aduthurai	Dr. K. Rajappan	Funded	14	14		
2	Almora	Dr. Gaurav Verma	Voluntary	7	7		
3	Arundhatinagar	Dr. Srikanta Nath	Funded	8	2		
4	Bankura	Drs. C K Bunia & Partha Pratim Ghosh	Funded	22	16		
5	Chatha	Dr. Vijay Bahadur Singh	Funded	11	15		
6	Chinsurah	Dr. Dilip Kumar Patra	Funded	14	12		
7	Chiplima	Dr. Rini Pal	Funded	9	9		
8	Coimbatore	Dr. C. Gopalakrishnan	Funded	21	21		
9	Cuttack	Drs. Arup K Mukherjee, Srikanta Lenka & Manas Kumar Bag	Voluntary	30	24		
10	Gangavati	Dr. Pramesh Devana	Funded	20	21		
11	Gerua	Dr. Kanchan Saikia	Voluntary	7	-		
12	Ghaghraghat	Dr. Amrit Lal Upadhaya	Funded	11	10		
13	Gorakhpur	Prof. B. N. Singh	Voluntary	-	-		
14	Gudalur	Dr. C. Gopalakrishnan	Voluntary	4	04		
15	Hazaribagh	Dr. Someshwar Bhagat	Voluntary	12			
16	ICAR-IIRR	Drs. M. S. Prasad, G. S. Laha, D. Krishnaveni, C. Kannan, D. Ladhalakshmi, V. Prakasam, K. Basavaraj and G. S. Jasudasu	HQ	32	32		
17	Imphal	Dr. A. Ratankumar Singh	Voluntary	8	06		
18	Jagdalpur	Dr. R. S. Netam	Funded	16	15		
19	Jagtial	Dr. N. Balram	Voluntary	4	04		
20	Karaikal	Dr. C. Jeyalakshmi	Voluntary	2	02		
21	Karjat	Dr. Pushpa D Patil	Funded	15	14		
22	Kaul	Dr. Mahaveer Singh	Funded	9	06		
23	Khudwani	Dr. Fayaz Ahmad Mohiddin	Funded	10	07		
24	Lonavala	Dr. K. S. Raghuwanshi	Voluntary	18	22		
25	Ludhiana	Dr. Jagjeet Singh Lore	Funded	16	16		
26	Malan	Dr. Sachin Upmanyu	Funded	13	08		
27	Mandya	Dr. V. B. Sanath Kumar	Funded	17	28		
28	Maruteru	Dr. V. Bhuyaneswari	Funded	23	18		
29	Masodha (Faizabad)	Dr. Vindeshwari Prasad	Funded	12	12		
30	Moncompu	Dr. M. Surendran	Funded	13	13		
31	Mugad	Dr. Gurupada Balol	Voluntary	14	04		
32	Navsari	Dr. Vijay A. Patil	Funded	16	22		
33	Nawagam	Dr. Rakesh Kumar Gangwar	Funded	19	25		
34	Nellore	Dr. P. Madhusudhan	Voluntary	10	06		
35	New Delhi	Drs. K. K. Mondal, B. Bishnu Maya & G. Prakash	Voluntary	9	09		
36	Pantnagar	Dr. Bijendra Kumar	Funded	15	15		
37	Patna	Dr. Md. Reyaz Ahmad	Voluntary	10	18		
38	Pattambi	·	Funded	16	16		
39		Dr. Puzhakkal Raji	+				
40	Ponnampet	Dr. G. N. Hosagoudar Dr. Rajesh Kumar Ranjan	Funded	13	13		
40	Pusa Raipur	Dr. Rajesh Kumar Kanjan Dr. Pradeep Kumar Tiwari	Funded Funded	15	10		
	*						
42	Rajendranagar	Dr. Talluri Kiran Babu	Funded	14	13		
43	Ranchi	Dr. M. K. Barnwal	Voluntary	10	05		
44	Rewa	Dr. S. K. Tripathi	Funded	10	10		
45	Sabour	Dr. Amarendra Kumar	Voluntary	7	08		
46	Titabar	Dr. Popy Bora	Funded	13	12		
47	Umiam (Barapani)	Dr. Pankaj Baiswar	Voluntary	3	07		
48	Upper Shillong	Drs. Ibadakhamkar War & Victor Tariang	Funded	8	05		
49	Varanasi	Dr. R. K. Singh	Funded	10	09		
50	Wangbal	Dr. Kh. Ngamreishang	Funded	6	06		
51	Warangal	Dr. G. Padmaja	Voluntary	3	02		
		Total Experiments (93.48%)		629	588		

1. HOST PLANT RESISTANCE

TRIAL No.1: SCREENING FOR LEAF BLAST RESISTANCE

❖ LEAF BLAST

➤ National Screening Nursery-1 (NSN-1)

The National Screening Nursery (NSN-1) comprised of 338 entries that included national regional and pathology checks. The nursery was evaluated at 26 locations across India under different-agro ecological Zones. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in the Table 1.1A. The screening against leaf blast was carried out under artificial inoculation condition at most the locations except at Jagdalpur, Karjat, Lonavala, Maruteru, Navasari, Patna, Ponnampet, Ranchi, Umiam and Wangbal, where natural method of infection was followed. None of the locations showed a very high (LSI => 7.0) disease pressure under NSN-1. The highest disease pressures (LSI) of 6.2 was recorded at Coimbatore and Gudalur while lowest (LSI-1.8) at Patna. The disease pressure was high (LSI 6-7) at Coimbatore (6.2), Gudalur (6.2) and Gagharghat (6.1). The disease pressure was moderate (LSI 3-6) at most of the locations evaluated and that included Karjat (5.9), Cuttack (5.7), Jagtial (5.6), Lonavala (5.5), Ranchi (5.3), Nawagam (5.2), New Delhi (5.0), Navasari (4.9), Khudwani (4.9), IIRR (4.9), Gangavathi (4.7), Mandya (4.6), Nellore (4.5), Rewa (4.5), Umiam (4.5), Jagdalapur (4.4), Bankura (4.2), Ponnampet (3.9), Pattambi (3.9) and Rajendranagar (3.1). The data from locations (Patna, Maruteru and Wangbal) where disease pressure was very low (<3.0) was not considered for the selection of promising entries.

None of the entries performed better than resistant check Tetep (SI 3.6) under NSN-1 however, the entries that scored SI \leq 4.1 with high PI were considered as promising and presented in Table 1.1B. **The promising entries were, IET Nos.** 30022, 30000, 30051, 29411, 30020, 28959, 30037, 28128, 29409, 30003, 28997, 30004, 29396, 30233, 29446 and 30013 (Table 1.1B).

➤ National Screening Nursery-2 (NSN-2)

The nursery consists of 571 lines drawn from initial variety trials (IVTs). These were evaluated at 19 centres under various ecological zones. The screening was carried out under artificial inoculation conditions at most of the locations. The highest disease pressure was recorded at Coimbatore (LSI 6.9) and the lowest at Wangbal (LSI 2.2). None of the locations showed a very high disease (LSI >7.0) in NSN-2, however two locations *viz.*, Coimbatore (6.9) and Gagharghat (6.3), showed high disease pressure (LSI 6-7). The disease pressure was moderate (LSI 3.0-6.0) at most of the locations and that included Cuttack (5.9), Umiam (5.7), Ranchi (5.6), Nawagam (5.4), Mandya (5.3), Rewa (5.1), IIRR (5.0), Nellore (5.0), Navasari (4.9), Gangavathi (4.8), Jagdalpur (4.5), Ponnampet (4.4) and Pattambi (3.5). The Performance of entries at locations *viz.*, Maruteru (2.7), Rajendranagar (2.5), Patna (2.4), and Wangbal (2.2) was not considered for the selection of best entries, where disease pressure was very low (<3.0) (Table 1.2A).

None of the entries were recorded SI less than 3.0, but a few promising entries with low susceptibility index (≤4.4) and high PI included IET # 30683, 30659, 30833, 30897, 31063, 31004, 30943, 30748, 31051, 30720, 31046, 31079, 31048, 31076, 31050, 30764 and 31011 (Table 1.2B).

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

Table 1.1A: Location severity index (LSI) and frequency distribution of leaf blast scores of NSN-1, Kharif 2022

2.7 MBF Z MMU Z ⋖ **KEM** α \Box 5.3 **KCI** Z _ 3.1 **KNK** ⋖ dNd Z ∞ \sim 3.9 ⋖ **blb** 1.8 NLd Z 5.0 NDF ⋖ 5.2 **NMC** ∢ Location/Frequency of scores (0-9) Z $S\Lambda N$ NLR ⋖ 2.8 UTM ∞ Z _ 4.6 MND ⋖ 5.5 ΛNT Z N/A KHD 5.9 Z Kll 9.9 $1C\Gamma$ ⋖ \mathcal{C} 4.4 1Db Z 4.9 IIKK ⋖ 6.2 CDF ⋖ α 6.1 CCL ∞ $CN\Lambda$ α 5.7 V CLK 6.2 **CBL** ⋖ BNK Screening Total **LSI** Score ∞ _

(LSI-Location severity Index; N-Natural; A-Artificial)

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

	۽	**(ċ->) I¶	83	91	77	91	91	91	91	96	87	87	87	91	78	87	78	96	87	17		Ì
		* S =>	19	21	17	21	20	21	21	22	20	20	20	21	18	20	18	22	20	4		
	2	**(£->) I¶	48	43	20	39	45	39	35	39	39	52	43	35	35	30	43	26	57	4		
		*£=>	11	10	11	6	10	6	∞	6	6	12	10	8	8	7	10	9	13	1		
		IstoT	23	23	22	23	22	23	23	23	23	23	23	23	23	23	23	23	23	23		
		IS	3.7	3.7	3.7	3.8	3.9	3.9	4.0	4.0	4.0	4.0	4.0	4.1	4.1	4.1	4.1	4.1	3.6	7.2		ļ
22		MMU	2	3	9	3	2	3	9	9	4	9	2	5	9	2	2	3	6	8	4.5	ا
f20		KEM	2	2	3	3	3	3	2	5	4	3	5	4	4	7	4	2	4	7	4.5	ľ
y index (<=4.1) and high PI in NSN-1 to leaf blast, Kharif 2022		BCI	1	4	4	4	3	4	4	5	3	3	7	4	S	S	9	3	1	7	5.3	ļ,
st, K		KNK	1	-	1	1	3	5	3	5	1	3	5	1	1	3	3	3	5	1	3.1	
bla		dNd	2	-	3	5	3	3	4	3	3	3	5	1	1	3	3	4	7	7	3.9	ŀ
leaf		BTA	5	4	2	3	2	4	3	4	4	4	2	3	3	3	3	4	2	7	3.9	ŀ
1 to		NDF	3	-	3	1	3	3	3	3	3	5	3	5	7	2	5	3	2	6	5.0	ŀ
SN-	(6-0)	NMC	9	4	3	4	5	4	3	4	9	5	7	2	9	4	3	9	4	8	5.2	į
in N	es (0	SAN	9	5	4	7	5	4	5	5	7	5	5	4	3	9	7	5	2	8	4.9	
PI i	of scores	NLR	2	5	9	3	5	2	4	4	2	2	2	3	4	5	3	2	2	6	4.5	ŀ
high	y of	anm	4	4	1	3	9	4	1	1	2	3	2	6	2	4	2	4	3	∞	4.6	,
I pui	Location/Frequency	ΛNΊ	9	4	9	9	5	3	7	S	S	5	5	4	5	5	9	S	3	9	5.5	ļ
.1) a	Freq	КНВ	7	7	5	4	5	4	5	3	4	5	5	4	5	2	S	S	3	9	4.9	ŀ
/=>	ion/l	KJL	2	7	5	5	7	3	2	3	5	7	7	3	3	5	3	S	3	5	5.9	ľ
lex (ocat	1CF	3	3	5	5	-	2	2	5	5	5	3	3	5	5	S	S	3	5	9.6	
y inc	Τ	ADL	1	3	П	0	0	0	0	7	3	3	1	4	0	0	0	S	1	6	4.4	ŀ
bilit		ПКК	4	3	4	4	4	4	S	3	3	3	3	3	2	4	4	4	1	6	4.9	,
eptil		CDF	3	4	1	4	2	7	4	5	4	2	3	9	9	4	5	4	4	6	6.2	
nsc		Təə	5	3	7	5	5	S	3	3	7	3	3	5	5	7	7	5	7	7	6.1	ŀ
0W		CNA	4	4	1	5	5	4	S	5	5	5	4	5	9	4	5	4	2	6	4.7	
ith l		CLK	5	S	7	5	S	5	5	5	5	7	5	5	5	S	5	5	5	6	5.7	ľ
es w		CBL	4	4	2	4	2	∞	4	S	4	3	4	5	S	4	9	4	4	∞	6.5	ľ
ntri		BNK	3	3	3	3	5	3	5	3	3	3	5	3	5	5	3	5	5	5	4.2	ŀ
mising e		IET No.	30022	30000	30051	29411	30020	28959	30037	28128	29409	30003	28997	30004	29396	30233	29446	30013	Tetep	HR-12		
Table 1.1B: Promising entries with low susceptibilit		Br. No.	4609	4610	4621	4501	4608	3412	4622	3712	4506	4601	4015	4603	4503	5802	4515	4602	T.	IH	IST	
Table 1		P. No.	6	10	21	31	∞	126	22	101	36	1	98	3	33	233	45	2	338	327		

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 3 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

Table 1.2A: Location severity index(LSI) and frequency distribution of leaf blast scores of NSN-2, Kharif 2022

								Locati	on/Frec	quency	Location/Frequency of scores (0-9)	(6-0) s							
Score	CBT	CTK	GNV	CGT	IIRR	JDP	MND	MTU	NLR	NVS	NWG	PTN	PTB	PNP	RNR	RCI	REW	UMM	WBL
0	0	0	0	0	0	13	0	0	0	0	0	76	0	0	0	0	0	0	2
1	0	0	0	0	1	48	2	7	8	3	0	171	0	4	277	9	1	0	160
2	0	0	2	0	0	50	16	239	78	5	0	0	103	30	0	15	24	11	198
3	2	35		9	38	78	110	200	37	26	13	145	165	139	81	25	52	19	154
4	29	0	189	0	186	71	34	58	85	201	68	0	207	86	0	52	92	54	52
ĸ	92	314	286	225	167	78	178	7	92	195	218	136	83	219	131	157	137	170	3
9	109	0	77	2	78	87	21	4	64	83	154	0	10	33	0	164	182	127	2
7	138	162	6	293	88	104	128	1	46	57	73	4	2	35	6	105	77	126	0
∞	144	0		-	0	24	71	1	50	1	10	0	0	2	0	47	9	47	0
6	73	09	0	44	0	0	0	0	33	0	1	0	0	3	1	0	0	4	0
Total	571	571	292	571	858	553	999	517	477	571	258	553	570	563	499	571	571	258	571
IST	6.9	6.5	4.8	6.3	5.0	4.5	5.3	2.7	5.0	4.9	5.4	2.4	3.5	4.4	2.5	9.9	5.1	5.7	2.2
Screening	A	A	A	A	A	Z	A	Z	A	Z	A	Z	A	Z	A	Z	A	Z	Z
(LSI-Location severity Index; N-Natural; A-Artificial)	severity In	ndex: N-N	Vatural: A	-Artificial															

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

Table 1.2B: Promising entries with low susceptibility index (<=4.4) and high PI in NSN-2 to leaf blast, Kharif 2022

_		_	_		_	_				_			_		_	_				_	_		-
*	*(c->) I4	87	93	98	80	80	100	98	85	73	100	87	80	80	80	87	98	71	93	87	13		
	* S =>	13	14	12	12	12	14	12	11	11	15	13	12	12	12	13	12	10	13	13	2		
*	*(£->) I¶	47	33	29	40	33	21	14	31	33	20	20	20	20	33	20	29	29	21	53	0		
	*£=>	7	S	4	9	S	3	2	4	2	3	3	3	3	2	3	4	4	3	8	0		
	IstoT	15	15	14	15	15	14	14	13	15	15	15	15	15	15	15	14	14	14	15	15		
	IS	3.7	3.7	4.1	4.2	4.2	4.2	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.4	4.4	4.4	4.4	4.4	3.2	7.3		
	MMU	3	9	4	4	2	2	4	2	9	5	7	9	2	2	7	5	ı	2	9	5	5.7	١
	BEM	5	5	2	5	9	5	4	4	9	3	9	4	9	3	4	5	9	4	5	7	5.1	1
	BCI	4	4	5	5	4	2	5	3	5	4	5	9	7	7	5	5	9	5	1	8	5.6	1
	dNd	3	3	9	Э	2	4	5	5	3	3	4	4	4	4	4	2	2	5	3	5	4.4	1
	атч	2	2	3	2	2	3	4	4	2	5	4	4	4	3	2	2	4	3	2	9	3.5	1
	NMC	9	4	4	5	5	4	9	1	9	5	4	4	5	7	5	5	7	9	4	8	5.4	1
	SAN	3	ж	5	5	7	5	4	2	5	4	4	5	4	4	4	5	5	5	1	7	4.9	1
	NLR	2	2	1	3	1	ı	1	ı	2	4	3	4	2	2	2	ı	2	ı	4	8	5.0	1
	anm	4	4	3	2	3	5	1	3	7	4	3	3	4	3	3	3	8	3	7	8	5.3	
	JDP	0	1	1	1	5	3	0	1	2	3	2	3	4	5	4	3	1	1	1	8	4.5	
	нкк	4	4	4	3	5	5	4	4	5	5	4	4	3	5	9	4	5	5	1	7	5.0	
	Təə	5	5	7	7	5	5	6	7	5	9	9	5	5	7	5	5	9	5	7	7	6.3	
	CNA	5	4	4	4	5	4	4	5	5	5	5	4	4	4	5	5	9	5	2	8	4.8	
	CLK	3	5	5	7	5	5	5	5	7	5	5	3	5	5	5	7	5	5	5	6	5.9	
	CBL	7	4	4	7	9	4	5	∞	4	5	4	9	9	5	5	9	5	5	4	6	6.9	
	IET No.	30683	30659	30833	30897	31063	31004	30943	30748	31051	30720	29484 (R)	31046	31079	31048	31076	31050	30764	31011	Tetep	HR-12		
	Br. No.	3652	3627	4403	4709	2095	5103	4762	3955	5414	3921	5104	5408	5625	5411	5622	5413	4204	5112	Ĺ	H	ISI	
	P. No.	546	521	3	169	138	65	221	466	122	433	99	116	156	119	153	121	337	74	695	558		

(SI-Susceptibility Index; *No. of locations where the entry has scored \le 5 and \le 3; **Promising index (PI) based on no. of locations where the entry had scored \le 3 and \le 5)

➤ National Screening-Hills (NSN-H)

The National Screening Nursery - Hills (NSN-H) comprised of 114 entries, were evaluated at 12 hill locations across India for their resistance to leaf blast. These entries were screened through natural infection condition at most of the locations except at Cuttack and IIRR, where entries were screened under artificial method of inoculation. In Khudwani and Malan, natural infection was supplemented by spread of diseased leaves. The frequency distribution of disease scores and location severity indices are presented in Table 1.3A. The disease pressure was very high (LSI <7) at Umiam (7.6) and it was high at Karjat (6.9) and Lonavala (6.2). The disease pressure was moderate at (LSI 3-6) at Cuttack (6.0), Khudwani (5.5), Almora (5.4), Imphal (4.6), IIRR (4.4), Ponnampet (4.1) and Malan (3.7). The low disease pressure (LSI<3) was recorded at Uppershillong (2.3) and Wangbal (1.9), hence data from these centres were not considered for selection of best entries. The selection of best entries was done from the locations where LSI was more than 3 and presented in table 1.3B. None of the entries found resistant (SI\le 3) and none scored less than resistant check (Tetep-3.4), however, the entries with SI ≤4.8 with high PI were considered promising and that included IET# 30486, 30483, 28895, 28882, 30503, 29654, 29636, 30514, 30531, 30507 and **29635** (Table 1.3B).

➤ National Hybrid Screening Nursery (NHSN)

The National Hybrid Screening Nursery (NHSN) consisted of 112 entries including different checks. The entries were evaluated at 24 locations across the country. The entries were evaluated under artificial inoculation and natural infection conditions at different locations. The frequency distribution of the disease scores and location severity indices are presented in Table 1.4A. None of the locations showed very high disease pressure (LSI >7), however Coimbatore (6.6), Gagharghat (6.3) and Cuttack (6.2) showed high disease pressure (LSI 6-7). The disease pressure was moderate (LSI 3-6) at Karjat (5.5), Nellore (5.2), Nawagam (5.2), Gangavathi (5.1), Khudwani (5.1), Bankura (5.0), Imphal (5.0), Rewa (5.0), Ranchi (4.9), Lonavala (4.9), IIRR (4.7), Jagdalpur (4.7), Umiam (4.5), Pattambi (4.2) and Mandya (4.0).

Selection of best entries was made from the locations where the disease pressure was \geq 3.0, accordingly centres such as Ponnampet (2.9), Maruteru (2.6), Uppershillong (2.2), Patna (1.9), Wangbal (1.9) and Rajendranagar (1.1) were not considered, as the disease pressure was very low (LSI- \leq 3.0). None of the hybrids under NHSN were found resistant, however, entries with SI \leq 4.5 with high PI were considered promising and that included IET # 30577, 30594, 30585, 30567, 30568, 29722, 30593, 30572, 30569, 30560, 30582, 30573, 30631, 30578 and 30579 (Table 1.4B).

Table 1.3A: Location severity index(LSI) and frequency distribution of leaf blast scores of NSN-H, Kharif 2022

II BUIN (1917) YABIU (ALIALAS HABINAGT IVIGIT ALGINT			2 (- C -)	aman ka II	n our raction (density arguing around the property of the training of the following the property of the prope		100 100 100 1	()			
Coord					Locati	Location/Frequency of scores (0-9)	cy of score	(6-0) sa				
2000	ALM	CTK	IIRR	IMP	KJT	CHY	LNV	MLN	PNP	MMN	OSC	WBL
0	0	0	0	0	0	0	0	0	0	0	9	0
1	0	0	1	0	0	0	0	36	0	0	33	35
2	9	0	0	0	2	1	1	1	13	0	32	58
3	~	9	22	44	2	13	0	27	34	0	27	21
4	23	0	53	3	2	14	2	15	15	1	5	0
5	27	27	24	42	18	28	23	12	40	2	4	0
9	14	0	1	6	0	24	48	3	8	5	0	0
<i>L</i>	25	41	12	12	99	76	28	2	4	42	1	0
8	8	0	0	3	0	8	8	0	0	43	1	0
6	3	10	1	1	22	0	4	15	0	21	3	0
Total	114	114	114	114	112	114	114	111	114	114	112	114
IST	5.4	0.9	4.4	4.6	6.9	2.5	6.2	3.7	4.1	9.7	2.3	1.9
Screening	Z	\mathbf{A}	\mathbf{A}	Z	Z	N/A	N	N/A	Z	N	Z	Z

(LSI-Location severity Index; N-Natural; A-Artificial)

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

	×	·*(č- >) I d	70	80	70	70	70	70	70	70	70	09	09	06	10	
		* S =>	7	8	7	7	7	7	7	7	7	9	9	6	1	
r2022	*	·*(£->) I¶	40	30	40	40	40	40	20	50	40	40	20	50	0	
t, Kharij		*£=>	4	3	4	4	4	4	2	5	4	4	2	5	0	,
leaf blas		IstoT	10	10	10	10	10	10	10	10	10	10	10	10	10	,
N-H to		IS	4.4	4.4	4.5	4.5	4.5	4.6	4.6	4.7	4.7	4.8	4.8	3.4	7.7	
in NS		MMU	∞	7	∞	5	7	∞	7	7	6	7	7	7	8	7.6
gh PI	(dNd	3	3	3	3	2	5	3	3	3	9	5	2	5	4.1
nd hi	(6-0) s	NTW		-	-	3	4	3	1	3	3	3	-	-	6	3.7
=4.8) 8	f score	ΛNΊ	9	5	5	9	S	9	9	9	9	7	9	2	9	6.3
ex (<=	ncy of	КНВ	9	∞	7	9	9	3	4	5	3	3	4	3	7	5.5
y inde	reque	KJT	5	S	7	7	3	7	7	6	7	7	7	4	7	6.9
Table 1.3B: Promising entries with low susceptibility index (<=4.8) and high PI in NSN-H to leaf blast, Kharif 2022	Location/Frequency of scores (0-9)	dMI	3	4	3	3	3	3	5	3	3	5	9	S	6	4.6
		ПВВ	3	4	4	5	3	4	4	5	4	4	4		6	4.4
		CLK	5	5	5	5	5	5	5	3	5	3	5	5	6	6.0
with l		WTV	4	2	2	2	7	2	4	3	4	3	3	4	∞	5.4
ing entries		ET No.	30486	30483	28895	28882	30503	29654	29636	30514	30531	30507	29635	Tetep	-12	
3B: Promis		Br. No	2506	2502	2306	2308	2711	2703	2402	2812	2915	2803	2404	Tei	HR-12	LSI 5.4 6.0 4.4 4.6 6.9 5.5 6.3 3.7 4.1 7.6
Table 1		P. No.	36	32	13	15	96	68	18	80	89	71	20	114	101	

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 5 and ≤ 5 ;

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

		MBL	0	27	71	14	0	0	0	0	0	0	112	1.9	N
		nze	2	55	23	11	6	5	1	0	0	5	111	2.2	N
		MMU	0	4	6	25	20	24	5	20	5	0	112	4.5	N
		KEM	0	0	1	6	22	44	33	8	0	0	112	9.0	\mathbf{V}
		ВСI	0	7	3	8	25	35	13	15	4	2	112	4.9	N
		BNB	0	105	0	0	0	2	0	0	0	0	107	1.1	A
2022		dNd	0	4	25	59	91	2	0	0	0	0	112	2.9	N
Kharif		PTB	0	0	9	20	48	25	12	1	0	0	112	4.2	A
ISN, I		NLd	38	24	0	32	0	16	0	2	0	0	112	1.9	Z
distribution of leaf blast scores of NHSN, Kharif 2022	(6-0)	NMC	0	0	0	4	28	38	30	10	1	1	112	5.2	A
cores	scores	NLR	0	0	14	2	29	18	21	13	9	6	112	5.2	A
last so	Location/Frequency of scores (0-9)	UTM	0	7	09	26	12	7	2	1	0	0	105	2.6	Z
leaf b	requei	MND	0	0	24	39	2	30	2	11	4	0	112	4.0	A
on of	tion/F	ЛЛТ	0	0	0	11	33	33	30	5	0	0	112	4.9	N
ributi		КНВ	7	0	4	9	10	43	12	24	9	0	112	5.1	N/A
Table 1.4A: Location severity index(LSI) and frequency distr		KJT	0	0	0	97	1	37	0	42	0	9	112	2.5	N
		AOC	1	1	5	35	25	14	4	8	6	10	112	4.7	N
		dMI	0	0	0	22	14	40	91	15	4	1	112	9.0	N
sI) an		ПКК	0	1	0	18	45	22	5	20	0	1	112	4.7	\mathbf{V}
lex(LS		TOO	0	0	0	0	0	41	0	<i>L</i> 9	0	4	112	6.3	A
ty ind		CNA	0	0	0	1	29	46	26	4	2	0	108	5.1	A
severi		CLK	0	0	0	5	0	46	0	51	0	10	112	6.2	\mathbf{V}
ition (CBL	0	0	0	2	6	19	23	22	22	15	112	9.9	A
: Locs		BNK	0	0	0	32	0	51	0	25	0	4	112	5.0	A
Table 1.4A		Score	0	1	2	3	4	S	9	7	%	6	Total	ISI	Screening

(LSI-Location severity Index; N-Natural; A-Artificial)

	**	·(c->) Id	94	68	78	72	68	94	83	83	83	72	72	68	83	78	83	88	17	
		* S =>	17	16	14	13	16	17	15	15	15	13	13	16	15	14	15	16	3	
	**	·(£->) I¶	33	39	33	33	33	22	33	28	28	39	33	28	33	33	28	44	0	
		*£=>	9	7	9	9	9	4	9	5	5	7	9	5	9	9	5	8	0	
22		IstoT	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	
if 20.		IS	4.1	4.2	4.2	4.2	4.3	4.3	4.3	4.3	4.4	4.4	4.4	4.4	4.5	4.5	4.5	3.8	7.3	
Khar		MMU	4	4	3	4	4	3	5	5	1	5	1	5	3	5	4	8	8	4.5
last,		KEM	5	3	5	9	2	2	4	5	5	3	9	5	3	4	5	5	7	5.0
eaf b		ВСІ	4	3	-	-	2	2	5	4	4	3	5	5	5	3	5	1	8	4.9
to l		BTB	4	4	4	4	2	4	5	5	4	2	4	3	4	4	5	3	9	4.2
HSN		OMN	5	3	9	5	5	4	4	4	5	9	5	9	4	5	9	4	8	5.2
[in]	(NLR	4	4	2	7	7	S	2	9	9	2	9	2	4	4	2	4	6	5.2
gh Pl	6-0) s	anm	3	3	3	2	3	2	3	2	2	3	3	2	3	2	2	3	8	4.0
tibility index (<=4.5) and high PI in NHSN to leaf blast, Kharif 2022	of scores (0-9)	ΛΝΊ	4	5	4	4	4	4	4	4	3	4	4	3	5	4	3	3	5	4.9
.5) a	cy of	КНВ	2	3	0	0	5	2	4	0	5	9	5	5	5	5	5	4	7	5.1
(<=4	dnen	KlL	2	7	7	3	3	5	7	3	3	3	5	5	3	7	5	5	7	5.5
ndex	Location/Frequency	adt	3	3	3	3	3	3	3	2	2	3	3	3	3	2	2	0	6	4.8
lity i	catio	dWI	3	5	7	3	4	5	3	5	4	5	3	5	3	3	5	4	5	5.0
ptibi		шкк	3	4	4	9	3	4	3	3	4	5	3	4	9	3	3	1	6	4.7
susce		199	5	5	5	7	7	5	7	5	5	7	5	5	7	7	7	7	7	6.3
low		CNA	5	4	5	5	4	5	9	4	5	9	9	5	5	9	5	3	8	5.1
with		CLK	5	5	5	5	5	7	5	5	7	7	7	5	5	5	5	5	6	6.2
tries		CBL	7	7	9	9	5	4	5	6	6	5	9	5	8	6	7	5	7	9.9
ıg en		BNK	3	3	5	5	3	5	3	7	5	5	3	7	5	3	5	3	5	5.0
romisin		IET No.	30577	30594	30585	30567	30568	29722	30593	30572	30569	30560	30582	30573	30631	30578	30579	Tetep	-12	
4B: F		r. No.	3106	3125	3115	3018	3019	3013	3124	3025	3020	3009	3112	3101	3315	3107	3108	Te	HR-12	ISI
Table 1.4B: Promising entries with low suscept		S. No. Br. No. IET No.	73 3	92 3	82 3	90	61 3	55 3	91 3	67 3	62 3	51 3	79 3	89	41 3	74 3	75 3	112	66	

(SI-Susceptibility Index; *No. of locations where the entry has scored \(\leq \) and \(\leq \); **Promising index (PI) based on no. of locations where the entry had scored \(\leq \) and \(\leq \) and \(\leq \)

> Donor Screening Nursery (DSN)

The Donor Screening Nursery (DSN) consisted of 229 entries including different checks. The entries were evaluated at 24 locations across the country. The entries were evaluated under artificial inoculation and natural infection conditions at different locations. The frequency distribution of the disease scores and location severity indices are presented in Table 1.5A. None of the locations showed very high (LSI>7) disease pressure. The disease pressure was high at Coimbatore and Gaagharghat (LSI 6.3), while it was low at Rajendranagar (1.4). The disease pressure was high (LSI 6-7) at Coimbatore (6.3), Gagharghat (6.3), Cuttack (6.0) and Almora (6.0). Most of the locations showed moderate disease pressure (LSI 3-6) and that included Jagdalpur (5.7), Umium (5.4), Lonavala (5.4), Ranchi (5.3), Nawagam (5.2), Gangavathi (5.1), Mandya (4.6), IIRR (4.6), Nellore (4.4), Rewa (4.2), Karjat (4.1), Imphal (4.0), Pattambi (3.7), Malan (3.2) and Uppershillong (3.1).

For selection of promising entries, the data of those locations were considered where the disease pressure was more than 3. Accordingly, the data of Maruteru (2.8), Ponnampet (2.3), Wangbal (2.2), Patna (1.5) and Rajendranagar (1.4) were not considered for selection of promising entries. The promising donors with SI ≤4.1 with high PI was presented in Table 1.5B and that included RNR 37909, MS-ISM-DIG-8, RP-Bio Patho-4, CB 18532, CGR 19-68, RNR 37998, AE 939, CB MSP9 007, UB 1066, CB MSP9 003, CB MSP9 006, RP Patho-11, MS-ISM-DIG-10, RP-Bio Patho-3, RP-Bio Patho-9, VP-R111-SHB, CB 18536, CB MSP9 005, CB 19127 and RNR 37993.

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

Table 1.5A: Location severity index(LSI) and frequency distribution of leaf blast scores of DSN, Kharif 2022	: Loc	ation	severi	ity in	dex(L	SI) ar	d free	dnenc	y dist	ribut	ion of	leafk	last s	cores	of DS	N, K	harif.	2022						
									ŀ	Γ00	cation/	Frequ	Location/Frequency of scores (0-9)	os jo	-0) sa.	6	ŀ			•	ŀ		-	
Score	ALM	CBL	CLK	CNA	Təə	ІІВВ	dWI	ADL	K1L	ΛNT	NTM	anm	UTM	NLR	NMC	NLd	PTB	dNd	RNR	BCI	BEM	MMU	nac	MBL
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	98	0	0	0	0	0	0	12	0
1	0	0	0	0	0	2	5	1	2	0	6	0	15	1	0	72	0	51	192	1	1	0	74	45
2	0	0	0	0	0	4	0	18	16	0	9	25	98	16	3	0	29	85	0	15	24	9	43	112
3	12	4	8	1	0	38	124	34	111	12	23	71	63	23	10	42	52	09	5	9	33	15	25	58
4	28	23	0	64	0	<i>L</i> 6	0	31	2	46	22	11	37	91	53	0	109	22	0	38	62	38	17	14
S	77	44	125	81	62	30	82	30	59	64	24	53	9	55	70	29	25	9	20	62	80	9	15	0
9	18	46	0	92	_	15	-	28	0	69	21	5	5	32	09	0	~	7	0	38	28	54	10	0
7	30	54	72	3	149	41	15	17	35	31	18	46	1	7	27	0	0	0	1	38	1	34	9	0
∞	48	46	0	1	0	0	0	17	0	5	1	17	0	2	9	0	0	0	0	12	0	14	6	0
6	16	12	24	0	0	2	2	52	3	1	9	0	0	2	0	0	0	0	0	2	0	3	17	0
Total	229	229	229	226	229	229	229	228	228	228	218	228	213	229	229	229	223	226	218	229	229	229	228	229
TSI	0.9	6.3	6.0	5.1	6.3	4.6	4.0	5.7	4.1	5.4	3.2	4.6	2.8	4.4	5.2	1.5	3.7	2.3	1.4	5.3	4.2	5.4	3.1	2.2
Screening	Z	A	A	\mathbf{A}	A	A	Z	Z	Z	Z	N/A	A	Z	A	A	Z	A	Z	A	Z	A	Z	Z	Z
	7.	-	. T. T.	1	٠ ٤٠																			

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 1.5B: Promising donors with low susceptibility index (<=4.1) and high PI in DSN

to leaf blast, Kharif 2022

						Lo	cati	on/	Fre	equ	enc	ey o	f sc	ore	es (()-9)						lı	*	3)**	*	2)**
P. No.	Design	ALM	CBT	CTK	GNV	CGT	IIRR	IMP	JDP	KJT	LNV	MLN	MIND	NLR	NWG	PTB	RCI	REW	UMM	OSC	SI	Total	<=3*	PI (<-3)**	*5=>	PI (<-5)**
105	RNR 37909	3	5	5	5	7	4	3	5	3	5	1	2	5	2	3	1	5	5	0	3.6	19	9	47	18	95
54	MS-ISM-DIG-8	3	3	5	5	7	4	3	2	3	3	3	2	4	4	3	4	5	5	3	3.7	19	10	53	18	95
75	RP-Bio Patho-4	3	4	7	6	7	5	1	1	3	4	1	2	6	4	3	5	2	5	2	3.7	19	9	47	15	79
19	CB18532	5	4	5	6	5	4	3	3	3	5	2	2	4	6	2	5	4	3	1	3.8	19	8	42	17	89
214	CGR-19-68	4	4	3	6	7	5	5	3	2	4	1	3	2	5	3	4	5	4	2	3.8	19	8	42	17	89
107	RNR 37998	4	6	5	4	5	4	3	3	3	5	1	3	4	5	4	4	3	5	1	3.8	19	7	37	18	95
189	AE 939	5	4	5	4	7	4	3	3	3	7	3	3	3	6	3	2	2	6	0	3.8	19	10	53	15	79
35	CB MSP9 007	4	6	5	6	5	4	3	2	3	5	1	2	3	6	2	5	5	5	1	3.8	19	8	42	16	84
59	UB 1066	5	3	5	6	7	3	3	2	3	4	3	3	4	6	2	5	3	6	1	3.9	19	10	53	15	79
31	CB MSP9 003	5	4	5	4	7	4	3	3	7	5	1	3	4	3	2	4	3	6	1	3.9	19	8	42	16	84
34	CB MSP9 006	3	4	5	4	7	3	3	2	3	5	1	3	4	6	4	8	3	6	1	3.9	19	9	47	15	79
70	RP-Patho-11	4	4	5	5	7	4	3	4	4	3	1	5	3	6	4	2	5	3	3	3.9	19	7	37	17	89
55	MS-ISM-DIG-10	4	9	7	4	5	4	3	2	3	3	6	3	4	3	2	4	4	4	2	4.0	19	8	42	16	84
74	RP-Bio Patho-3	3	8	5	5	7	4	1	5	3	5	1	2	4	5	4	5	3	4	2	4.0	19	7	37	17	89
80	RP-Bio Patho-9	3	4	7	6	5	4	1	4	5	5	1	3	5	7	-	2	2	4	4	4.0	18	6	33	15	83
136	VP-R111-SHB	6	5	5	5	5	3	5	4	3	5	1	3	4	4	4	5	2	6	1	4.0	19	6	32	17	89
20	CB18536	3	7	5	4	5	5	3	4	3	7	2	5	1	4	2	6	4	6	1	4.1	19	7	37	15	79
33	CB MSP9 005	4	6	5	5	7	4	5	2	2	5	1	3	3	3	4	7	4	6	1	4.1	19	7	37	15	79
3	CB19127	5	4	7	4	7	2	3	6	7	5	1	3	2	6	4	2	2	7	1	4.1	19	8	42	13	68
106	RNR 37993	7	4	5	6	5	3	5	3	3	5	1	2	4	5	4	6	4	6	0	4.1	19	6	32	15	79
88	Tetep	5	8	5	4	5	1	3	4	5	3	5	2	3	4	4	6	5	5	3	4.2	19	6	32	17	89
216	HR-12	8	6	9	8	5	7	5	7	3	3	6	7	7	5	4	7	4	5	9	6.1	19	2	11	8	42
	LSI	6.0	6.4	6.0	5.1	6.3	4.6	4.0	5.7	4.1	5.4	3.2	4.7	4.4	5.2	3.7	5.3	4.2	5.4	3.1		•		•		

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

❖ TRIAL No.2: SCREENING FOR NECK BLAST RESISTANCE

> NSN-1

The National Screening Nursery-1 (NSN-1) for neck blast disease was evaluated at seven locations across India with 338 entries during *Kharif* 2022. The entries were screened under natural conditions in all the centres except at Nellore and Rajendranagar, where artificial method of screening was followed with spray of spore suspension. The frequency distribution of disease scores and location severity indices are presented in Table 2.1A. The highest and lowest disease pressure was observed at Nellore (5.7) and Lonavala (2.1) respectively. None of the locations showed very high disease pressure (LSI >7). The disease pressure was high (LSI 6-7) at Nellore (5.7), Rajendranagar (5.7), Jagdalpur (5.1), Nawagam (4.5), Ponnampet (4.4), and Mandya (3.6). The data from Lonavala was not considered for selection of best entries.

The selection of promising entries were done based on data from six locations and presented in Table 2.1B. Eleven entries viz., IET# 29576, 30037, 29430, 30200, 28959, 29743, 29825, 29891, 30207, 29361 and 29826 were found to be resistant with SI \leq 3.0. Other promising entries which performed better across all locations included IET # 30021, 29405, 29446, 28950, 30083, 30072, 29004, 29000, 29943, 28965 and 30233 (Table 2.1B).

Table 2.1A: Location severity index (LSI) and frequency distribution of neck blast scores of NSN-1. *Kharif* 2022

G			Location/F	requency o	f scores (0-9))	
Score	JDP	LNV	MND	NLR	NWG	PNP	RNR
0	15	17	5	0	0	0	1
1	0	157	125	0	9	52	22
2	0	1	0	0	0	0	0
3	81	129	82	30	121	111	17
4	0	0	0	0	1	0	0
5	133	31	53	160	156	85	125
6	0	0	0	0	0	0	0
7	75	0	34	136	48	56	166
8	0	0	0	0	0	0	0
9	32	0	35	7	1	30	7
Total	336	335	334	333	336	334	338
LSI	5.1	2.1	3.6	5.7	4.5	4.4	5.7
Screening	N	N	N	A	N	N	A

Table 2.1B: Promising entries with low susceptibility index (<=3.5) and high PI in

NSN-1 to neck blast, Kharif 2022

			Loca	tion/F	requei	ncy of	scores	(0-9)				*		*
P. No.	Br. No.	IET No.	JDP	MND	NLR	NWG	PNP	RNR	SI	Total	<=3*	PI (<-3)**	*5=>	PI (<-5)**
258	6006	29576	3	1	3	3	3	1	2.3	6	6	100	6	100
22	4622	30037	0	0	5	3	1	7	2.7	6	4	67	5	83
42	4512	29430	0	1	3	3	5	5	2.8	6	4	67	6	100
129	5503	30200	3	0	5	3	1	5	2.8	6	4	67	6	100
126	3412	28959	0	1	5	3	1	7	2.8	6	4	67	5	83
196	4128	29743	3	1	3	3	3	5	3.0	6	5	83	6	100
185	4116	29825	3	1	5	3	1	5	3.0	6	4	67	6	100
211	4308	29891	5	1	3	3	5	1	3.0	6	4	67	6	100
128	5502	30207	5	1	7	3	1	1	3.0	6	4	67	5	83
144	5210	29361	3	1	-	5	1	5	3.0	5	3	60	5	100
170	4101	29826	5	1	5	5	1	1	3.0	6	3	50	6	100
17	4617	30021	0	3	5	3	1	7	3.2	6	4	67	5	83
32	4502	29405	0	1	5	3	3	7	3.2	6	4	67	5	83
45	4515	29446	0	1	5	3	3	7	3.2	6	4	67	5	83
123	3409	28950	0	1	7	3	1	7	3.2	6	4	67	4	67
51	4902	30083	3	1	5	5	3	3	3.3	6	4	67	6	100
50	4901	30072	7	5	3	3	1	1	3.3	6	4	67	5	83
85	4014	29004	3	1	5	5	1	5	3.3	6	3	50	6	100
89	4018	29000	5	1	3	5	1	5	3.3	6	3	50	6	100
147	3501	29943	5	1	5	3	1	5	3.3	6	3	50	6	100
162	3517	28965	5	0	5	1	3	7	3.5	6	3	50	5	83
233	5802	30233	0	1	5	3	7	5	3.5	6	3	50	5	83
338	Te	tep	3	-	5	1	1	5	3.0	5	3	60	5	100
327	HF	R-12	9	7	7	5	9	7	7.3	6	0	0	1	17
	LSI		5.1	3.6	5.7	4.5	4.4	5.7						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NSN-2

A total of 571 entries were evaluated under NSN-2 at four different locations during *kharif* 2022. The screening was done under natural infection condition at all the locations. The location severity index and frequency distribution of scores presented in the Table 2.2A indicated that, the disease pressure was moderate (LSI 3-6) at all the locations *viz.*, Jagdalpur (5.2), Ponnampet (5.2), Nawagam (4.6) and Mandya (3.4), and hence the data from these four centres were considered for selection of best entries.

A total of 33 entries were found resistant against neck blast under NSN-2 (Table 2.2B). Two entries viz. IET 30684 and IET 30692 performed on par with resistant check Tetep (SI 2.8). Other promising entry with resistant reaction was presented in table 2.2B which includes IET# 30831, 29990, 30881, 31051, 30763, 30674, 30748, 30856, 31050, 31054, 30707, 30752, 31141, 31141, 30660, 30673, 30676, 30833, 30844, 30861, 30889, 31077, 30768, 30772, 30786, 29952, 30750, 30753, 31152, 30650 and 30667.

Table 2.2A: Location severity index (LSI) and frequency distribution of neck blast scores of NSN-2, *Kharif* 2022

C		Location/Freque	ency of score (0-9)	
Score	JDP	MND	NWG	PNP
0	11	13	0	0
1	2	234	6	40
2	0	0	0	0
3	150	134	188	163
4	1	0	1	0
5	199	61	281	142
6	0	0	5	0
7	142	57	72	148
8	0	0	0	0
9	48	59	4	70
Total	553	558	557	563
LSI	5.2	3.4	4.6	5.2
Screening method	N	N	N	N

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 2.2B: Promising entries with low susceptibility index (<=2.5) and high PI in NSN-2 to neck blast, *Kharif* 2022

		-	Location	on/Freque	ency of sco	re (0-9)				*		*
P. No.	Br. No.	IET No.	JDP	MND	NWG	PNP	SI	Total	<=3*	PI (<-3)**	*S=>	PI (<-5)**
547	3653	30684	0	1	3	3	1.8	4	4	100	4	100
555	3661	30692	0	1	3	3	1.8	4	4	100	4	100
1	4401	30831	3	1	3	1	2.0	4	4	100	4	100
454	3943	29990	3	0	3	3	2.3	4	4	100	4	100
53	4454	30881	5	0	3	1	2.3	4	3	75	4	100
122	5414	31051	3	0	5	1	2.3	4	3	75	4	100
336	4203	30763	0	1	5	3	2.3	4	3	75	4	100
536	3642	30674	0	1	5	3	2.3	4	3	75	4	100
466	3955	30748	3	1	-	3	2.3	3	3	100	3	100
26	4426	30856	3	1	3	3	2.5	4	4	100	4	100
121	5413	31050	3	1	3	3	2.5	4	4	100	4	100

			Locatio	on/Freque	ency of sco	re (0-9)				*		*
P. No.	Br. No.	IET No.	JDP	MND	NWG	PNP	SI	Total	<=3*	PI (<-3)**	*5=>	PI (<-5)**
126	5418	31054	3	1	3	3	2.5	4	4	100	4	100
418	3906	30707	3	1	3	3	2.5	4	4	100	4	100
470	3959	30752	3	3	3	1	2.5	4	4	100	4	100
481	6207	31141	3	1	3	3	2.5	4	4	100	4	100
483	6209	31143	3	1	3	3	2.5	4	4	100	4	100
522	3628	30660	3	1	3	3	2.5	4	4	100	4	100
535	3641	30673	3	3	3	1	2.5	4	4	100	4	100
539	3645	30676	3	1	3	3	2.5	4	4	100	4	100
3	4403	30833	3	1	5	1	2.5	4	3	75	4	100
14	4414	30844	5	1	3	1	2.5	4	3	75	4	100
32	4432	30861	5	1	3	1	2.5	4	3	75	4	100
62	4463	30889	5	1	3	1	2.5	4	3	75	4	100
154	5623	31077	5	1	3	1	2.5	4	3	75	4	100
341	4208	30768	5	1	3	1	2.5	4	3	75	4	100
345	4212	30772	3	1	5	1	2.5	4	3	75	4	100
360	4227	30786	1	1	5	3	2.5	4	3	75	4	100
417	3905	29952	3	1	5	1	2.5	4	3	75	4	100
468	3957	30750	3	1	5	1	2.5	4	3	75	4	100
471	3960	30753	5	1	3	1	2.5	4	3	75	4	100
492	6218	31152	5	1	3	1	2.5	4	3	75	4	100
511	3617	30650	3	1	5	1	2.5	4	3	75	4	100
529	3635	30667	5	1	3	1	2.5	4	3	75	4	100
569	Те	etep	3	0	3	1	1.8	4	4	100	4	100
558	HF	R-12	9	9	9	9	9.0	4	0	0	0	0
	LSI		5.2	3.4	4.6	5.2						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NSN-H

A total of 114 entries were evaluated under NSN-hills nursery at five different locations across India under hill ecosystem. The entries were screened under natural infection condition at all the locations. The location severity index and frequency distribution of scores were presented in the Table 2.3A. The disease pressure was moderate (LSI 3-6) at Malan (5.2), Ponnampet (5.1), Almora (4.9) and Imphal (3.4). The disease pressure was low at Lonavala (1.5) and hence not considered for selection of promising entries. The entries which performed better than resistant check Tetep (SI 3.7) are listed in Table 2.3B and they are IET# 30512, 30507, 30530, 30485, 30515, 30488, 30493, 30525, 30529, 30511, 28880, 30502, 29636, 30531, 30509, 29639, 28915 and 28914.

Table 2.3A: Location severity index(LSI) and frequency distribution of neck blast scores

of NSN-H, Kharif 2022

C		Location/	Frequency of	score (0-9)	
Score	ALM	IMP	LNV	MLN	PNP
0	0	0	14	0	0
1	1	18	64	13	13
2	0	1	1	0	0
3	31	58	35	17	26
4	0	4	0	0	0
5	51	26	0	20	31
6	0	4	0	0	0
7	24	3	0	23	32
8	0	0	0	0	0
9	3	0	0	15	12
Total	110	114	114	88	114
LSI	4.9	3.4	1.5	5.2	5.1
Screening	N	N	N	N	N

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 2.3B: Promising entries with low susceptibility index (<=3.5) and high PI in

NSN-H to neck blast, Kharif 2022

			Location	ı/Freque	ncy of sco	re (0-9)				**		*
P. No.	Br. No	IET No	ALM	IMP	MLN	PNP	SI	Total	<=3*	PI (<-3)*:	*5=>	PI (<-5)**
78	2810	30512	3	3	1	1	2.0	4	4	100	4	100
71	2803	30507	5	1	1	1	2.0	4	3	75	4	100
67	2914	30530	5	1	-	1	2.3	3	2	67	3	100
34	2504	30485	3	3	-	3	3.0	3	3	100	3	100
81	2813	30515	3	3	-	3	3.0	3	3	100	3	100
38	2508	30488	3	3	1	5	3.0	4	3	75	4	100
44	2514	30493	3	3	1	5	3.0	4	3	75	4	100
60	2907	30525	5	3	3	1	3.0	4	3	75	4	100
66	2913	30529	5	1	-	3	3.0	3	2	67	3	100
76	2808	30511	5	3	-	1	3.0	3	2	67	3	100
19	2403	28880	5	3	3	3	3.5	4	3	75	4	100
53	2523	30502	3	3	5	3	3.5	4	3	75	4	100
18	2402	29636	7	3	1	3	3.5	4	3	75	3	75
68	2915	30531	3	1	3	7	3.5	4	3	75	3	75
73	2805	30509	3	1	7	3	3.5	4	3	75	3	75
29	2413	29639	5	3	5	1	3.5	4	2	50	4	100
88	2702	28915	5	3	1	5	3.5	4	2	50	4	100
94	2708	28914	5	3	1	5	3.5	4	2	50	4	100
114	Τe	etep	3	5	-	3	3.7	3	2	67	3	100
101	HF	R-12	-	7	-	7	7.0	2	0	0	0	0
(CL C	LSI	v *No of lo	5.0	3.4	5.3	5.1	*D .		1 (D	T) 1 1		

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NHSN

Total of 112 entries in National Hybrid Screening Nursery (NHSN) were evaluated for neck blast reaction at eight locations. The entries were screened under natural infection conditions in all the locations except at Rajendranagar; where artificial method of screening was followed. The disease pressure was highest at Malan (6.5) and lowest at Lonavala (2.1). The disease pressure was moderate at Malan (6.5), Rajendranagar (5.5), Nawagam (5.2), Jagdalpur (5.1), Umium (4.4), Imphal (3.8) and Mandya (3.0). The data from Lonavala centre was not considered for selection of best entries (Table 2.4A). The entries which showed low disease score across the locations with high PI were considered as promising against neck blast and listed in Table 2.4B. The resistant entries included IET#30558, 30555, 30569, 30587, 30576, 29722, 30620, 30556 and 30578.

> DSN

A total of 229 entries were evaluated under Donor screening nursery at eight locations during *Kharif*, 2022. The entries were screened under natural infection conditions in all the locations. The location severity index and frequency distribution of scores were presented in the Table 2.5A. The disease pressure was high at Almora (LSI 6.2); while it was lowest at Lonavala (1.9). The disease pressure was moderate (LSI 3-6) at Jagdalpur (5.9), Umium (4.5), Nawagam (4.3), Rajendranagar (3.6), Mandya (3.3) and Imphal (3.1). The data from Lonavala was not considered for selection of best entries under DSN. The promising entries with low disease pressure across the locations were presented in Table 2.5B and that included RP-Bio Patho-3, MS-68-3, VP-R262-SHB, MS-68-3-7, VP-R243-SHB, VP-D9-SHB, AE 939, Pusa 1824-17-4-3, Pusa 1824-17-4-8, KNM 14282, RNR 37909, VP-R45-SHB, VP-R104-SHB, VP-R260-SHB, CL-442, OYT ADW-259, VP-R294-SHB, KNM 12346, VP-WP-SHB, RP-Bio Patho-5, VP-R126-SHB, RP Bio Patho-7, VP-R36-SHB, BE 683, MTU 1265 and RP Bio Patho-8.

Table 2.4A: Location severity index(LSI) and frequency distribution of neck blast scores of NHSN, *Kharif* 2022

Canno			Locat	ion/Frequ	uency of s	core (0-9)	
Score	IMP	JDP	LNV	MLN	MND	NWG	RNR	UMM
0	0	0	0	0	1	0	0	3
1	7	2	53	1	48	1	6	0
2	1	0	0	0	0	0	0	8
3	57	29	59	2	37	19	7	35
4	4	1	0	0	0	0	0	13
5	35	50	0	11	13	62	55	16
6	1	0	0	0	0	0	0	26
7	6	23	0	21	5	29	40	5
8	1	0	0	0	0	0	0	5
9	0	7	0	8	8	1	4	1
Total	112	112	112	43	112	112	112	112
LSI	3.8	5.1	2.1	6.5	3.0	5.2	5.5	4.4
Screening	N	N	N	N/A	N	N	A	N

Table 2.4B: Promising entries with low susceptibility index (<=3.5) and high PI in NHSN

to neck blast, Kharif 2022

		y	Loc	ation	/Freq	uenc	y of so	core (0-9)				*		*
P.No.	Br. No.	IET No.	IMP	JDP	MLN	MND	NWG	RNR	UMM	SI	Total	<=3*	PI (<-3)**	*\$=>	PI (<-5)**
49	3007	30558	1	5	-	1	3	5	3	3.0	6	4	67	6	100
45	3003	30555	3	3	-	1	5	5	3	3.3	6	4	67	6	100
62	3020	30569	3	5	-	1	5	3	3	3.3	6	4	67	6	100
84	3117	30587	1	5	ı	1	5	5	3	3.3	6	3	50	6	100
72	3105	30576	3	5	ı	3	3	5	2	3.5	6	4	67	6	100
55	3013	29722	3	3	ı	1	5	7	2	3.5	6	4	67	5	83
26	3226	30620	3	3	ı	1	5	5	4	3.5	6	3	50	6	100
46	3004	30556	5	3	ı	3	5	5	0	3.5	6	3	50	6	100
74	3107	30578	1	5	-	1	5	3	6	3.5	6	3	50	5	83
112	Tetep		5	1	-	0	3	7	8	4.0	6	3	50	4	67
99	HR-12	·	3	7	-	9	7	7	8	6.8	6	1	17	1	17
	LSI		3.8	5.1	6.5	3.0	5.2	5.5	4.4						·

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

Table 2.5A: Location severity index(LSI) and frequency distribution of neck blast scores of DSN, *Kharif* 2022

Caara			Locati	on/Frequ	uency of s	score (0-9)	
Score	ALM	IMP	JDP	LNV	MND	NWG	RNR	UMM
0	0	2	0	5	4	0	54	0
1	0	17	0	123	94	5	33	0
2	0	0	0	0	0	0	0	10
3	1	175	49	99	57	103	23	43
4	0	0	0	0	0	0	0	67
5	34	35	59	0	33	83	60	56
6	0	0	0	0	0	0	0	35
7	27	0	87	0	15	38	54	15
8	0	0	0	0	0	0	0	3
9	9	0	33	0	25	0	5	0
Total	71	229	228	227	228	229	229	229
LSI	6.2	3.1	5.9	1.9	3.3	4.3	3.6	4.5
Screening	N	N	N	N	N	N	A	N

Table 2.5B: Promising donors with low susceptibility index (<=3.0) and high PI in DSN to neck blast. Kharif 2022

P.No.	P.No. Desinations With 10% susceptionity in P.No.	w suscep	Lo Lo	cation	/Frequency	of score	(0-9)	4	I	o L I S	>	I d	= >) I d
10	ADT 54	-	3	3	1	1	1	4	2.2	9	2	83	9	100
74	RP-Bio Patho-3	-	1	5	1	3	0	3	2.2	9	2	83	9	100
99	MS-68-3	-	3	3	1	5	1	2	2.5	9	2	83	9	100
156	VP-R262-SHB	-	3	3	1	5	0	3	2.5	9	2	83	9	100
57	MS-68-3-7	-	3	3	1	5	1	3	2.7	9	2	83	9	100
152	VP-R243-SHB	-	3	5	1	3	0	4	2.7	9	4	29	9	100
172	VP-D9-SHB	-	3	3	3	5	0	3	2.8	9	2	83	9	100
189	AE 939	-	3	3	1	3	1	9	2.8	9	2	83	2	83
202	Pusa 1824-17-4-3	-	3	3	0	3	1	7	2.8	9	2	83	2	83
204	Pusa 1824-17-4-8	-	3	3	1	3	0	7	2.8	9	2	83	2	83
26	KNM 14282	1	5	3	1	3	0	5	2.8	9	4	<i>L</i> 9	9	100
105	RNR 37909	ı	3	5	1	1	5	2	2.8	9	4	<i>L</i> 9	9	100
128	VP-R45-SHB	1	3	5	1	5	0	3	2.8	9	4	<i>L</i> 9	9	100
133	VP-R104-SHB	1	3	5	1	5	0	3	2.8	9	4	29	9	100
154	VP-R260-SHB	-	3	5	1	5	0	3	2.8	9	4	<i>L</i> 9	9	100
196	CL-442	-	3	5	1	3	0	5	2.8	9	4	<i>L</i> 9	9	100
197	OYT ADW - 259	-	3	5	1	3	0	5	2.8	9	4	67	9	100
160	VP-R294-SHB	-	1	5	1	7	0	3	2.8	9	4	<i>L</i> 9	2	83
86	KNM 12346	,	3	3	1	5	3	3	3.0	9	S	83	9	100
116	VP-WP-SHB	-	1	7	1	3	3	3	3.0	9	2	83	2	83
92	RP-Bio Patho-5		3	5	1	3	1	2	3.0	9	4	<i>L</i> 9	9	100
141	VP-R126-SHB	-	5	5	1	3	1	3	3.0	9	4	<i>L</i> 9	9	100
78	RP-Bio Patho-7	-	1	3	1	5	0	8	3.0	9	4	2 9	2	83
123	VP-R36-SHB	-	1	7	1	3	1	5	3.0	9	4	<i>L</i> 9	2	83
184	BE 683		3	3	1	5	0	9	3.0	9	4	<i>L</i> 9	S	83
187	MTU 1265	-	5	5	1	3	0	4	3.0	9	3	20	9	100
62	RP-Bio Patho-8	ı	1	5	1	2	0	9	3.0	9	3	20	2	83
227	Tetep	1	5	3	0	3	1	9	3.0	9	4	29	2	83
216	HR-12	7	3	7	6	7	7	5	6.4	7	1	14	2	29
	LSI	6.2	3.1	5.9	3.3	4.4	3.6	4.5						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

TRIAL No.3: SCREENING FOR SHEATH BLIGHT RESISTANCE

> NSN-1

The National Screening Nursery-1 (NSN-1) was evaluated for resistance to sheath blight at 22 locations across India. The entries were screened by artificial inoculation at most of the centres except Patna where the entries were evaluated under natural condition. The highest disease pressure was recorded at Kaul (7.8) and lowest at Patna (1.3). The frequency distribution of disease scores and location severity indices (LSI) were presented in Table 3.1A. The disease pressure was very high (LSI >7) at Kaul (7.8), Gangavati (7.6) and Titabar (7.4) and Cuttack (7.1); high (LSI 6 - 7) Ludhiana (6.9), IIRR (6.8), Maruteru (6.6), Pattambi (6.8), New Delhi (6.7), Chinsurah (6.2), Raipur (6.2), Masodha (6.1), Navasari (6.0); moderate (LSI 3-6) at Chiplima (5.9), Mandya (5.7), Moncompu (5.6), Coimbatore (5.6), Pant Nagar (5.3), Aduthurai (5.2), Bankura (5.2), Varanasi (4.9); and less (LSI <3) at Patna (1.3). The selection of best entries in NSN-1 was done based on the reaction at those locations where LSI was ≥ 3 . Some of the promising entries with $SI \le 5.1$ are presented in the Table 3.1B. None of the entries were found resistant (SI\le 3.0) against sheath blight disease. Promising entries (SI\le 5.0) were viz., IET Nos. 30078, 29351, 29891, 29935, 30093, 30106, and 29549. Some of the other promising entries were selected based on low susceptibility index than Swarnadhan (tolerant check) are 29833, 30207, 27908, 30085, 29564, 29860, 29301 and 29284.

➤ NSN-2

The National Screening Nursery-2 (NSN-2) was evaluated for its resistance to sheath blight at 20 locations. The entries were screened by artificial inoculation at most of the centres except Patna where the entries were evaluated under natural conditions and observed moderate level of (LSI <1.4) disease severity. The frequency distribution of disease scores and location severity index (LSI) are presented in Table 3.2A. The disease pressure was very high (LSI >7) at Gangavati (7.6), Kaul (7.5), Cuttack (7.4), and Ludhiana (7.1); high (LSI 6 - 7) at IIRR (6.8), Maruteru (6.6), Titabar (6.6), Masodha (6.5), Pattambi (6.5), Aduthurai (6.0) and Bankura (6.0) and moderate (LSI 3-6) at Navasari (5.8), Raipur (5.7), Pant Nagar (5.6), Chiplima (5.4), Varanasi (5.1), Mandya (4.9), Moncompu (4.2) and Coimbatore (4.0); and low (LSI <3) at Patna (1.4) and the selection of promising entries in NSN-2 was done based on the reaction at those locations where LSI was \geq 3.0. None of the entries were resistant (SI \leq 3.0) against sheath blight based on similarity index. Some of the promising entries with SI \leq 5.0 are IETs 30805, 31087, 31114, 30867, 30945, 30783, 30844, 30973, 30977, 30881, 30976, 30891 and 29805 were found better than tolerant check Swarnadhan (5.2) (Table 3.2B).

> NSN-H

The National Screening Nursery - Hills (NSN-H) was evaluated for their resistance to sheath blight at NRRI, IIRR and Pant Nagar. These entries were screened through artificial inoculation at all the locations. The frequency distribution of disease scores and location severity indices are presented in Table 3.3A. The disease pressure was high (LSI 6-7) at Cuttack (6.9), IIRR (6.4); moderate (3-6) at Pantnagar (5.0). The selection of best entries was done based on the reaction at these two locations. None of the entries were resistant (SI≤3.0) against sheath blight. Some of the highly promising entries viz., IETs 28896, 30499 and 29654 were found better than tolerant checks (Tetep and Swarnadhan) and other few entries viz., IETs 30518, 30531, 28887, 30526, 30514 and 30504 were on par with checks (Table 3.3B).

Table 3.1A: Location severity index and frequency distribution of sheath blight disease score for NSN1 entries, Kharif-2022

						ı			Locat	ion/F1	Location/Frequency of scores (0-9)	cy of s	cores ((6-0)								
Score/Location	ADT	ADT BNK	CHN	CHP	CBT	CTK	GNV	IIRR	KUL	LDN	MND MTU MSD MNC NVS NDL	MTU	MSD	MNC	NVS	NDL	PNT	PTN	PTB	RPR	TTB	VRN
0	17	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	137	0	0	0	0
1	46	0	0	0	0	5	0	0	0	0	4	0	0	25	0	0	0	105	0	0	2	∞
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	55	91	35	52	54	23	0	0	5	1	58	0	19	36	25	0	29	71	16	3	10	72
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	78	123	120	117	149	40	11	75	23	39	134	92	151	92	142	89	235	19	83	158	58	190
9	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	20	115	133	125	113	144	213	225	137	278	88	242	119	154	146	208	69	9	145	154	09	47
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	101	6	50	37	18	119	112	35	156	17	49	9	43	33	25	21	2	0	68	23	146	11
Total	317	338	338	331	336	331	336	335	321	335	333	324	332	338	338	297	335	338	333	338	276	328
TSI	5.2	5.2	6.2	5.9	9.6	7.1	9.7	8.9	7.8	6.9	5.7	9.9	6.1	9.6	0.9	6.7	5.3	1.3	8.9	6.2	7.4	4.9
Screening	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	Z	A	A	A	A

(N- Natural; A- Artificial; LSI- Location Severity Index)

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

		(c=>) IA	9/	92	92	84	75	0/	62	29	75	09	70	9	71	62	71	62	75	6 2	15	15	1
)22		S=>	16	16	16	16	15	14	13	14	15	12	14	13	15	13	15	13	15	14	3	3	-
rif-2((£=>) I¶	38	33	33	26	35	25	38	29	20	30	25	20	29	29	24	24	20	0	0	0	1
Khai		£=>	8	7	7	S	7	2	∞	9	4	9	S	4	9	9	2	S	4	0	0	0	-
ght,		IstoT	21	21	21	19	20	20	21	21	20	20	20	20	21	21	21	21	20	21	20	20	1
ı bliş		IS	4.5	4.6	4.6	4.7	4.8	4.8	4.9	4.9	5.0	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.7	7.2	7.2	١
neat		VRN	3	3		1	3	Т		3	3	5	2	7	5	5	5	5	5	2	5	5	4.9
to sl		ATT	7	5	5	6	5	T	5	3	2	5	5	1	3	5	5	5	5	5	6	1	7.4
SN1		КРК	2	7	5	3	5	2	5	5	2	7	5	7	5	5	5	7	5	5	7	7	6.2
in N	(6	BTP	3	2	2	3	5	5	3	2	5	5	2	5	7	3	3	5	5	5	6	7	8.9
lity index (SI\u25.1) and high promising index in NSN1 to sheath blight, Kharif-2022	(6-0) s	TNA	5	5	3	2	5	5	3	5	5	3	5	5	3	3	3	2	2	5	7	7	5.3
ng in	scores	NDF	7	5	7	7	1	ı	7	7	ı	1	ı	7	5	7	7	7	2	7	7	7	6.7
misin	$0\mathbf{f}$	SAN	5	3	2	5	7	7	5	2	7	7	7	5	5	7	5	5	5	5	7	7	0.9
pro	ency	MAC	1	1	0	0	0	0	1	0	1	1	3	0	1	1	1	3	1	5	7	7	9.9
high	Location/Frequency	asm	2	7	5	5	3	3	3	5	2	3	3	5	5	7	3	5	5	5	7	7	6.1
and	n/Fi	UTM	5	5	2	L	5	5	7	5	5	L	7	7	5	<i>L</i>	5	5	-	5	<i>L</i>	7	9.9
5.1)	catio	MND	8	5	5	-	8	5	6	7	5	5	3	3	7	8	5	L	5	<i>L</i>	5	7	5.7
SI≤	\mathbf{L}_{0}	ГDИ	2	7	5	5	7	7	7	7	2	5	5	5	7	7	7	7	7	7	7	6	6.9
dex		KNL	5	2	7	5	5	7	7	2	3	5	2	5	7	7	7	3	7	7	6	6	7.8
ty in		ІІВВ	7	7	7	5	6	7	7	7	7	7	7	5	5	5	5	7	7	5	6	6	8.9
ibili		CΛΛ	L	7	_	5	L	L	7	7	L	L	7	7	6	<i>L</i>	<i>L</i>	L	L	<i>L</i>	6	7	9.7
scept		CLK	2	3	6	5	3	6	7	6	7	3	6	7	6	7	7	1	5	5	7	5	7.1
w sus		CBL	3	3	3	3	7	5	5	3	5	7	7	3	5	5	5	3	3	7	7	7	9.9
h lo		СНЬ	2	5	3	5	5	2	3	3	2	7	5	7	3	3	5	7	3	5	5	7	5.9
s wit		СНИ	3	3	3	5	5	5	3	2	7	3	3	5	3	5	3	5	3	5	7	6	6.2
ıtrie		BNK	3	5	5	5	3	2	5	7	2	6	5	5	3	3	5	7	6	7	7	5	5.2
ng er		TQA	1	0	1	3	3	Π	3	0	3	0	0	1	5	5	6	П	5	5	ı	6	5.2
Table 3.1B: Promising entries with low susceptibil		IET No.	ZC	30078	29351	Tetep	29891	29935	30093	30106	29549	29833	30207	27908	30085	29564	29860	29301	29284	Swarnadhan	TN1	IR-50	LSI
Table 3.		P.No.	84	99	204	338	211	208	59	55	237	171	128	82	<i>L</i> 9	253	177	74	62	334	328	331	

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\le 3^*$ and $\le 5^{**}$)

Table 3.2A: Location severity index and frequency distribution of sheath blight disease score for NSN-2 entries, Kharif-2022

		•				•		Loc	ation/I	Location/Frequency of scores (0-9)	icy of sa	cores ((6-(5			
Score/Location	ADT	BNK	CHP	CBT	CTK	GNV	IIRR	KUL	LDN	MND	MTU	MSD	MNC	NVS	PNT	PTN	PTB	RPR	TTB	VRN
0	26	0	0	0	0	0	0	0	0	1	0	0	91	0	0	181	0	0	0	0
1	37	0	3	70	7	0	0	0	0	22	0	0	46	0	0	209	0	0	3	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	92	41	56	228	29	1	2	7	0	188	0	18	78	57	33	136	39	7	16	102
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	102	253	252	197	99	14	112	43	21	198	93	205	131	242	343	20	166	361	168	314
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	89	223	177	92	227	298	393	289	482	104	393	223	153	263	165	7	249	198	255	95
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	204	54	18	0	244	177	62	203	99	45	0	113	24	8	14	0	102	5	111	19
Total	513	571	545	571	263	629	699	542	529	829	486	529	523	570	555	553	929	571	553	530
LSI	0.9	0.9	5.4	4.0	7.4	9.7	8.9	7.5	7.1	4.9	9.9	6.5	4.2	5.8	9.6	1.4	6.5	5.7	9.9	5.1
Screening	A	Y	A	A	Y	Y	\mathbf{A}	A	A	A	A	A	\mathbf{A}	A	A	Z	A	A	A	A

(N- Natural; A- Artificial; LSI- Location Severity Index)

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

6/ PI (<=2) 4 Table 3.2B: Promising entries with low susceptibility index (SIS5.0) and high promising index in NSN-2 to sheath blight, Kharif-2022 **S=>** (£=>) Iq S £=> S ~ IntoT **4. 8** 5.0 4.6 4.6 .8 **4.8 4.8 4.8** 4.9 4.9 4.9 5.0 5.0 5.2 7.2 7.3 5.0 IS 5.1 **NBN** 9.9 LLB 5.7 **KPR** 6.5 Location/Frequency of scores (0-9) **BLB** 5.6 **LNd** 2.8 $S\Lambda N$ 4.2 MNC 6.5 **MSD** _ _ 9.9 UTM 4.9 MND \mathcal{C} **LDN** _ 7.5 KNL 8.9 IIKK 9.7 $\mathbf{C}\mathbf{N}\mathbf{\Lambda}$ _ _ _ 7.4 **CLK** 4.0 **CBL** \mathcal{C} 5.4 CHb 0.9 BNK TQA α Swarnadhan IET No. Tetep IR-50 TNI LSI P.No.

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored <3* and <5**)

Table 3.3A: Location severity index and frequency distribution of sheath blight disease score for NSN-H entries, *Kharif*-2022

Score/Location	Location	/Frequency of sco	res (0-9)
Score/Location	CTK	IIRR	PNT
0	0	0	0
1	2	0	0
2	0	0	0
3	8	0	23
4	0	0	0
5	22	41	71
6	0	0	0
7	42	65	19
8	0	0	0
9	38	8	1
Total	114	114	114
LSI	6.9	6.4	5.0
Screening	A	A	A

(N- Natural; A- Artificial; LSI- Location Severity Index)

Table 3.3B: Promising entries with low susceptibility index (SI≤5.0) and high promising index in NSN-H to sheath blight, *Kharif*-2022

		g ,		Locati	ion/Free	quency	of score	s (0-9)		
P.No.	IET No.	СТК	IIRR	PNT	SI	Total	<=3	PI (<=3)	<=5	PI (<=5)
24	28896	3	5	3	3.7	3	2	67	3	100
3	Vivekdhan 62 (NC)	5	5	3	4.3	3	1	33	3	100
7	ZC	3	5	5	4.3	3	1	33	3	100
50	30499	5	5	3	4.3	3	1	33	3	100
89	29654	3	5	5	4.3	3	1	33	3	100
106	IR-64	3	5	5	4.3	3	1	33	3	100
85	30518	7	5	3	5.0	3	1	33	2	67
68	30531	1	7	7	5.0	3	1	33	1	33
30	28887	5	5	5	5.0	3	0	0	3	100
62	30526	-	5	5	5.0	2	0	0	2	100
80	30514	5	5	5	5.0	3	0	0	3	100
97	30504	5	5	5	5.0	3	0	0	3	100
110	Swarnadhan	5	5	5	5.0	3	0	0	3	100
114	Tetep	5	5	5	5.0	3	0	0	3	100
102	TN1	7	9	5	7.0	3	0	0	1	33
105	IR-50	5	9	5	6.3	3	0	0	2	67
	LSI	6.9	6.4	5.0	-	-	-	-	-	-

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

> NHSN

The National Hybrid Screening Nursery (NHSN) was evaluated for their resistance to sheath blight at 22 varied locations. The entries were screened by artificial inoculation at most of the centres except Arundhatinagar and Patna where the entries were evaluated under natural incidence. The frequency distribution of disease score and location severity index (LSI) are presented in the Table 3.4A. The disease pressure was very high (LSI >7) at Titabar (7.6), Ludhiana (7.5), Gangavathi (7.4), NRRI (7.2) and Aduthurai (7.1); High (LSI 6-7) at IIRR (6.9), Pattambi (6.8), Maruteru (6.7), Masodha (6.6), Kaul (6.6) Bankura (6.4), Chinsurah (6.4), New Delhi (6.3), Raipur (6.0); moderate (LSI 3-6) at Navasari (5.9), Moncompu (5.8), Pantnagar (5.1), Varanasi (5.2), Coimbatore (5.4), Mandya (3.9) and Arundhatinagar (3.7), and low at (LSI <3) at Patna (2.0). Therefore, the data from those centres having LSI ≤3.0 was not considered for selecting the promising entries. None of the entries were showed resistant against sheath blight based on the 0-9 disease screening scale (Table 3.4B). IET No 29616 showed high level of tolerance compared to Tetep. Some of the selected promising entries are namely, IET 30575, 30621, 30617, 30602, 30605, 30603, 30625, 30609, 29758 and 30623.

> DSN

The Donor Screening Nursery (DSN) was evaluated for resistance to sheath blight at 21 disease hot spot locations in India. The entries were screened by artificial inoculation at all the centers except Patna, where the entries were evaluated under natural conditions. The frequency distribution of disease scores and location severity index (LSI) were presented in Table 3.5A. The disease pressure was very high (LSI >7) at Gangavati (7.6), Titabar (7.3), and Ludhiana (7.1); high (LSI 6-7) at Cuttack (6.9), New Delhi (6.6), Kaul (6.5), Maruteru (6.4), IIRR (6.3), Masodha (6.3), Aduthurai (6.0), and Bankura (6.0); moderate (LSI 3-6) at Raipur (5.9), Pattambi (5.7), Chiplima (5.6), Navasari (5.5), Pantnagar (5.3), Varanasi (5.2), Coimbatore (4.6), Moncompu (4.4), and Mandya (4.0); and low (LSI >3) at Patna (0.8). The selection of promising entries in DSN was done based on the reaction at those locations where LSI was ≥3.0. None of the entries showed resistant (≤3) against sheath blight. However, some of the entries were found to be better than Tetep and promising (≤5) namely, VP-R36, 19082, MS-ISM-DIG-1, VP-D5, VP-R298, VP-D9, VP-R294, UB 1066, VP-R297, VP-R262, VP-R109, VP-R158, VP-R134, CB17135, MS-ISM-DIG-4, RP-Bio Patho-5, CO52, KNM 12346, 19273, CB18586 and CB17533 (Table 3.5B).

Table 3.4A: Location severity index and frequency distribution of sheath blight disease score for NHSN entries, Kharif-2022

		6			1	•					D						<i>c</i> (- 1			Ī
									Locati	on/Fr	Location/Frequency of scores (0-9)	y of so	cores ((6-0								
Score/ Location	ADT	ARD BNK CHN	BNK	CHN	CBT	CTK	GNV	IIRR	KUL	LDN	LDN MND MTU MSD MNC NVS NDL	MTU	MSD	MNC	NVS		PNT	PTN	PTB	RPR	TTB	VRN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	35	0	0	0	0
1	1	8	0	0	0	2	0	0	0	0	12	0	0	3	0	0	0	32	0	0	0	2
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	7	46	5	6	18	5	0	0	2	0	63	0	∞	9	5	-	19	22	3	-	0	21
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w	28	35	42	36	99	15	9	20	30	4	20	18	39	26	55	36	89	18	27	55	17	58
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	19	3	47	44	35	46	75	92	29	77	6	75	30	99	50	71	23	5	61	99	46	22
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	51	0	18	23	3	42	31	16	13	29	8	3	35	12	2	2	2	0	21	0	49	∞
Total	106	92	112	112	112	110	112	112	112	110	112	96	112	112	112	110	112	112	112	112	112	111
TSI	7.1	3.7	6.4	6.4	5.4	7.2	7.4	6.9	9.9	7.5	3.9	6.7	9.9	5.8	5.9	6.3	5.1	2.0	8.9	0.9	9.7	5.2
Screening	A	Z	A	A	A	A	A	A	A	A	Z	A	A	A	A	A	A	Z	A	A	A	A
(N- Natural: A- Artificial: USI- Location Severity Index	I.SI-I	cation	Severity	/ Index)																		

(N- Natural; A- Artificial; LSI- Location Severity Index)

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

(**≤=>**) Id 9/ 2 11 55 7 4 S S Table 3.4B: Promising entries with low susceptibility index (SI\u2015.6) and high promising index in NHSN to sheath blight, Kharif-2022 25 | 14 <u>S</u>=> (£=>) Iq S £=> S S 5.0 21 5.5 21 5.6 20 5.5 21 5.5 21 5.6 20 4.8 21 5.0 20 5.6 20 **Total** 5.6 5.2 5.2 5.3 5.3 7:7 7.5 IS 5.2 Λ<mark>Κ</mark>Ν α 9.7 LLB 0.9 **KPR** 8.9 PTB 5.1 Location/Frequency of scores (0-9) **LNd** 6.3 NDF 5.9 $S\Lambda N$ 5.8 **W**IC 9.9 **USIN** 6.7 UTM 3.9 MND 7.5 **LDN** 9.9 KNT 6.9 IIKK $CN\Lambda$ 7.2 CLK 5.4 **CBL** 6.4 CHN 3.7 6.4 BNK **VED** TUA Swarnadhan IET No. Ajaya Tetep IR-50INI LSI P. No ∞

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

Table 3.5A: Location severity index and frequency distribution of sheath blight disease score for DSN entries, Kharif-2022

7			•			•					0							,			
Score/								Ľ	ocation	Location/Frequency of scores (0-9)	ency o	f score	(6-0) s								
Location	ADT	BNK	СНР	CBT	CTK	GNV	IIRR	KUL	LDN	MIND	MTU	MSD	MNC	NVS	NDL	PNT	PTN	PTB	RPR	TTB	VRN
0	14	0	0	0	0	0	0	0	0	0	0	0	29	0	0	0	131	0	0	0	0
1	10	0	16	2	3	0	0	0	0	34	0	0	27	0	0	0	29	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	34	6	42	92	15	1	22	11	1	110	0	13	36	27	0	33	15	37	5	6	39
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	40	112	65	121	57	15	50	99	24	41	69	26	53	118	48	138	16	83	123	19	121
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	20	87	57	28	89	129	140	112	163	19	143	75	64	84	143	47	0	92	92	34	38
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	88	21	44	2	82	84	17	32	41	24	9	43	16	0	6	11	0	13	6	53	11
Total	206	229	224	229	225	229	229	221	229	228	218	228	225	229	200	229	229	225	229	115	209
ISI	6.0	6.0	9.6	4.6	6.9	9.7	6.3	6.5	7.1	4.0	6.4	6.3	4.4	5.5	9.9	5.3	8.0	5.7	5.9	7.3	5.2
Screening	A	\mathbf{A}	A	A	A	A	A	\mathbf{A}	A	A	A	A	A	A	A	A	N	A	A	A	A
S	. 1 T O.		ζ	1	,																

(N- Natural; A- Artificial; LSI- Location Severity Index)

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

PI (<=2) 80 80 78 62 78 78 9 28 72 72 72 63 **6**2 63 89 9 7 53 61 21 12 13 16 7 17 12 16 15 12 7 4 12 13 13 4 13 7 10 **S=>** 12 13 4 4 Table 3.5B: Promising entries with low susceptibility index (SI\u2015.0 and high promising index in DSN to sheath blight, Kharif-2022 39 33 33 37 39 33 28 37 4 33 22 37 25 7 1 40 25 33 16 (£=>) Iq 30 30 21 0 £=> S 9 9 S œ 9 4 S S 9 0 0 15 18 18 20 18 18 19 20 18 20 20 20 19 19 19 <u>1</u> 18 19 <u>1</u> <u>1</u> 19 20 IntoT 4.6 **4.**6 4.7 4.8 4.8 4.8 4.8 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.0 4. 4. 7.7 7.7 4.7 4.7 5.1 5.7 7.9 7.4 IS 5.2 $\Lambda \mathbf{K} \mathbf{N}$ 7.3 LLB 5.9 **KPR** S S S S Location/Frequency of scores (0-9) 5.7 **blb** S 6 6 5.3 **JNd** 9.9 NDF v 4.4 5.5 $S\Lambda N$ MNC 6.3 **USM** v 6.4 UTM 4.0 MND **LDN** 6.3 6.5 KN IIKK 6 6.0 6.0 5.6 4.6 6.9 7.6 $CN\Lambda$ S S 6 CLK 0 CBL 6 СНЬ BNK 6 TQA 0 0 0 0 m 2 5 Designation MS-ISM-DIG-4 RP-Bio Patho-5 MS-ISM-DIG-1 VP-R298-SHB VP-R294-SHB VP-R297-SHB VP-R262-SHB VP-R109-SHB VP-R134-SHB VP-R158-SHB VP-R36-SHB VP-D5-SHB VP-D9-SHB KNM 12346 Swarnadhan CB17135 CB18586 CB17533 UB 1066 LSI CO52 19273 retep \mathbb{R} -50 19082Z P.No. 156 223 217 220 123 169 172 162 135 149 144 163 160 59 9/ 26 227 53 48 86 47 51 9

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored <3* and <5**)

TRIAL No.4: SCREENING FOR BROWN SPOT RESISTANCE

> NSN-1

The National Screening Nursery (NSN-1) comprised of 338 entries evaluated at 17 locations across India under different-agro ecological Zones. The entries were screened under natural infection conditions at most of the centres except at Bankura, Gangavathi, IIRR, Ludhiana and Pusa; where screening was conducted under artificial inoculation with spore suspension. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in Table 4.1A. The disease pressure was highest at Gangavathi (7.4), while it was lowest at Upper shilling (0.1). The disease pressure was high (LSI 6-7) at IIRR (7.0), Ludhiana (6.6) and Khudwani (6.5); moderate (LSI 3-6) at Gagharghat (5.6), Chatha (5.4), Rewa (5.2), Sabour (5.1), Ponnampet (4.9), Jagdalpur (4.7), Masodha (3.9), Bankura (3.8), Mugad (3.2) and Lonavala (3.1). The selection of promising entries was done based on the data of those locations where LSI was more than 3. The disease pressure was low at centres viz., Mandya (2.3) and Uppershillong (0.1); hence data from these centres were not considered for the selection of best entries. None of the entry was shown a resistance reaction against brown spot disease under NSN-1; however, a few promising entries with low SI (<4.5) across the centres were observed and they are IET# 30233, 29539, 30824, 30261, 30695, 28821, 28544, 30097, 30230, 28128, 30830, 30697, 28353, 30823, 28960 and 30703 (Table 4.1B).

> NSN-2

A total of 571 entries were screened under NSN- 2 at 11 locations across the India for brown spot disease. The entries were screened under artificial inoculation conditions at Bankura, Gangavathi, Ludhiana and Pusa; while it was under natural infection condition at Chatha, Jagdalpur, Mandya, Ponnampet, Rewa and Sabour. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in the Table 4.2A. The disease pressure was highest and lowest at Gangavathi (7.5) and Mandya (2.5) respectively. The disease pressure was high (LSI 6-7) at Pusa (6.4); moderate at Ponnampet (5.9), Ludhiana (5.7), Gagharghat (5.7), Bankura (5.2), Chatha (5.1), Jagdalpur (5.1), Rewa (5.1) and Sabour (5.0). The disease pressure was very low at Mandya (2.) and; hence data from this centre was not considered for selection of best entries (Table 4.2A).

The promising entries with low disease pressure across the locations presented in Table 4.2B. Some of the promising entries included IET# 30767, 30848, 31044, 31056, 30801, 31021, 31068, 31075, 30752, 30852, 31153, 30753, 30772, 31059, 30856, 31076, 30799, 30831, 31014, 31079 and 30774.

Table 4.1A: Location severity index(LSI) and frequency distribution of brown spot scores of NSN-1, Kharif 2022

S							Locat	ion/Fre	quency	Location/Frequency of score (0-9)	(6-0)						
Score	BNK	CHT	GNV	CGT	IIRR	JDP	KHD	TNV	LDN	MND	MSD	MGD	PNP	PSA	REW	SBR	OSC
0	0	0	0	0	0	6	1	45	0	20	0	0	0	0	0	0	323
1	5	2	0	0	0	7	0	0	0	138	11	8	0	0	0	13	13
2	0	0	0	0	0	15	2	52	0	L	69	0	13	0	6	0	2
ဇ	207	72	0	~	0	38	33	114	11	100	96	287	58	2	10	111	0
4	0	0	1	0	11	69	1	99	0	45	14	0	74	7	20	0	0
v	112	126	3	177	54	82	<i>L</i> 9	43	77	14	68	37	68	59	175	100	0
9	0	0	37	121	55	64	1	23	0	9	5	0	25	133	120	0	0
7	13	124	177	3	59	52	166	1	216	4	45	9	57	116	2	82	0
«	0	0	52	29	94	0	19	0	0	0	2	0	<i>L</i>	10	0	0	0
6	0	13	99	0	53	0	48	0	33	0	1	0	11	0	0	32	0
Total	337	337	335	338	326	336	338	334	337	334	332	338	334	327	336	338	338
ISI	3.8	5.4	7.4	5.6	7.0	4.7	6.5	3.1	9.9	2.3	3.9	3.2	4.9	6.2	5.2	5.1	0.1
Screening	A	N	A	N/A	A	Z	N/A	N	A	Z	N	Z	N	A	Z	Z	Z
(I CI I contion corresponder Indox: N Motumel. A Autificial)	orromiter In	10.v. M Mo.	N A 1.														

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

-																					,
		**(¿->) I¶	87	93	73	87	29	L9	53	80	87	80	09	L9	73	71	80	73	42		
		* S =>	13	14	11	13	10	10	8	12	13	12	6	10	11	10	12	11	11		
,		**(£->) I¶	09	47	47	47	47	40	53	40	33	40	40	33	27	36	40	40	21		
)22		*£=>	6	7	7	7	7	9	8	9	2	9	9	2	4	2	9	9	3		1
arif 20		IstoT	15	15	15	15	15	15	15	15	15	15	15	15	15	14	15	15	14		,
ot, Kh		IS	4.0	4.1	4.2	4.3	4.3	4.3	4.4	4.4	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.7		1 1
'n spo		SBR	3	3	3	3	3	7	3	3	3	5	3	7	5	7	5	7	7	5.1	
brow	•	KEM	5	5	5	5	9	9	9	5	5	5	4	9	5	9	5	3	5	5.2	-
-1 to	•	∀Sd	3	5	9	5	5	5	7	5	4	9	9	5	9	9	7	9	-	6.2	١.
NSN	•	dNd	4	4	9	3	3	3	2	4	4	5	2	4	4	3	4	5	3	4.9	10
PI in	(6-0)	WCD	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3.2	-
high	of score (asm	5	5	5	3	1	3	3	2	2	5	3	2	2	2	5	3	5	3.9	1
and		ГВИ	3	3	5	5	5	5	7	7	5	7	5	3	7	5	6	5	7	9.9	
=4.5)	dnenc	ΛΝΊ	3	4	0	2	0	0	0	3	3	3	0	0	0	0	3	0	3	3.1	ļ.
ex (<	n/Fre	KHD	3	3	3	3	∞	0	7	7	7	5	7	7	5	6	2	7	5	6.5	-
y ind	Location/Frequency	aar	3	3	Э	3	4	4	3	3	5	2	9	4	9	4	4	4	5	4.7	,
ibilit	Γ_0	ивв		5	9	7	9	7	9	4	5	5	9	5	5	5	5	5	4	7.0	
scept	•	CGT	5	5	S	S	9	5	9	5	5	3	8	9	5	5	3	5	5	9.6	
ns wo		CNA	7	7	7	7	6	7	7	7	7	7	9	7	9	-	7	6	4	7.4	
ith l		CHL	3	3	3	5	3	7	3	3	3	3	5	5	5	5	3	3	7	8 5.5	
ies w		BNK	3	3	3	5	3	3) 3	5	5	3	3	3	3	3	3	3	5	3.8	
iising entr	į	LET No.	30233	29539	30824	30261	30695	28821	28544 (R	30097	30230	28128	30830	30697	28353	30823	28960	30703			TOTAL CO.
Table 4.1B: Promising entries with low susceptibility index (<=4.5) and high PI in NSN-1 to brown spot, Kharif 2022	;	Br. No	5802	4804	4313	6012	3823	5801	4303	4911	5803	3712	5315	3825	3704	4312	3410	3833	Tetep	ISI	
Table 4.	j	P. No.	233	109	287	264	310	232	206	09	234	101	283	312	93	286	124	320	338		0

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 5 and ≤ 5

Table 4.2A: Location severity index(LSI) and frequency distribution of brown spot scores of NSN-2, *Kharif* 2022

Score				Locati	on/Fre	quency	of scor	e (0-9)			
	BNK	CHT	GNV	GGT	JDP	LDN	MND	PNP	PSA	REW	SBR
0	0	0	0	0	0	0	35	0	0	0	0
1	0	3	0	0	5	0	218	1	0	1	9
2	0	0	0	0	7	0	0	12	0	7	0
3	116	149	0	6	55	9	171	46	0	25	196
4	0	0	1	0	116	0	96	72	0	64	0
5	288	225	2	318	142	343	19	144	58	300	193
6	0	0	41	158	136	0	16	60	229	154	0
7	167	170	231	16	90	205	3	89	218	18	130
8	0	0	245	73	2	0	0	74	36	0	0
9	0	13	43	0	0	6	0	65	0	1	40
Total	571	560	563	571	553	563	558	563	541	570	568
LSI	5.2	5.1	7.5	5.7	5.1	5.7	2.4	5.9	6.4	5.1	5.0
Screening	A	N	A	N/A	N	A	N	N	A	N	N

(LSI-Location severity Index; N-Natural; A-Artificial)

> NSN-H

The National Screening Nursery - Hills (NSN-H) was evaluated for their resistance to brown spot at five locations *viz.*, Almora, IIRR, Khudwani, Lonavala and Ponnampet. These entries were screened through natural method in all the locations except at IIRR. The frequency distribution of disease scores and location severity indices are presented in Table 4.3A. The disease pressure was very high (LSI >7) at IIRR (7.4) while it was high at Ponnampet (6.4.). Moderate disease pressure was recorded at Almora (5.5) and Khudwani (5.8). The disease pressure was very low (LSI <3) at Lonavala (2.0), hence this centre data was not considered for selection of best entries. None of the entries found resistant against brown spot; however, few entries with low SI (≤5.3) considered promising and they are IET# 30530, 28887, 30527, 30515, 30513, 30507, 30524, 30526, 30487, 30512, 30525 and 30528 (Table 4.3B).

> NHSN

One hundred and twelve hybrids including checks were evaluated at 14 locations against brown spot disease under NHSN. The highest and lowest disease pressure was recorded at Gangavathi (7.6) and Lonavala (2.8) respectively. The disease pressure was high (LSI 6-7) at Pusa (6.8) and IIRR (6.8). Most of the centres showed moderate disease pressure *viz.*, Khudwani (5.8), Chatha (5.8), Gagharghat (5.5), Rewa (5.3), Ludhiana (4.8), Jagdalpur (4.6), Chinsurah (4.3) and Bankura (3.5). The Performance of entries at Mugad, Mandya and Lonavala was not considered for identifying promising entries, as the disease pressure was low at these centres (< 3.0) (Table 4.4A).

None of the entries recorded resistance reaction consistently across the locations however a few promising entries that included IET #30571, 30620, 30562, 30619, 30590, 30591, 30613, 30586, 30616, 30561, 30566 and 30567(Table 4.4B).

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

	**	*(č- >) I d	06	06	0/	0/	08	0/	0/	20	0/	78	8/	0/	09	08	0/	0/	0/	08	08	08	08	08	08	
		* S =>	6	6	7	7	8	7	7	7	7	7	7	7	9	8	7	7	7	8	8	8	8	8	4	
r 2022	**	*(£->) I¶	30	20	40	40	30	30	30	30	30	22	22	40	40	30	30	30	30	20	20	20	20	20	40	d <3 and <5)
ot, Kharij		*£=>	3	2	4	4	3	3	3	3	3	2	2	4	4	3	3	3	3	2	2	2	2	2	2	rv had score
oility index (<=4.8) and high PI in NSN-2 to brown spot, Kharif 2022		Total	10	10	10	10	10	10	10	10	10	6	6	10	10	10	10	10	10	10	10	10	10	10	2	of locations where the entry had scored <3 and <5)
SN-2 to b		SI	4.2	4.6	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.7	4.6	f locations v
in NS		SBR	1	3	3	3	3	3	3	3	2	5	3	3	3	3	3	5	1	3	5	3	3	3	3	5.0
igh PI	(KEM	5	5	5	9	5	5	9	4	4	5	5	5	2	5	5	3	5	5	5	5	2	4	5	5.1 5.7 5.9 6.4 5.1 5.0 and <3:**Promising index (PI) based on no.
nd hi	e (0-9)	VSd	5	5	9	5	7	9	5	9	9	1	1	7	9	5	9	9	9	9	5	5	5	7	-	6.4 dex (PI
:4.8)	fscore	dNd	3	5	2	9	4	2	7	5	3	3	4	4	3	4	2	3	3	5	5	9	5	5	-	5.9
=>) X:	n/Frequency of	ГDИ	5	5	5	5	5	5	5	5	7	5	5	7	5	5	5	5	5	3	5	5	5	5	-	5.7 **Prom
' inde	ednei	aar	4	4	4	3	3	4	4	9	4	3	5	3	4	3	5	4	4	5	9	4	9	2	1	5.1
bility	n/Fr	TOO	2	2	8	5	5	7	2	5	2	9	9	2	9	2	2	2	8	5	5	5	2	5	2	
scepti	Locatio	CNA	9	9	8	8	L	<i>L</i>	9	7	L	9	L	8	6	8	L	L	8	9	9	L	L	4	1	7.5
ns mo	Γ	CHT	5	5	3	3	3	3	3	3	3	5	3	3	3	3	7	3	5	5	3	3	5	5	3	5.1 e entrv
vith lo		BNK	3	3	3	3	5	5	3	3	3	5	5	3	7	7	3	7	3	5	3	5	5	7	7	5.2 where the
g entries v		IET No.	30767	30848	31044	31056	30801	31021	31068	31075	30752	30852	31153	30753	30772	31059	30856	31076	30799	30831	31014	31079	30774		Rasi	LSI of locations w
Table 4.2B: Promising entries with low susceptil		Br.No	4207	4418	5406	5420	4243	5124	5612	5621	3959	4422	6220	3960	4212	5602	4426	5622	4241	4401	5116	5625	4214	Tetep	5924	ity Index: *No.
Table 4.2B		P.No.	340	18	114	128	375	98	143	152	470	22	494	471	345	133	26	153	373	1	78	156	347	695	246	LSI S.2 S.1 7.5 S.7 S.7 S.1 S.2 S.1 S.2 S.1 S.2 S.1 S.2 S.2 S.3 S.3

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5

Table 4.3A: Location severity index(LSI) and frequency distribution of brown spot scores

of NSN-H, Kharif 2022

Casus		Location/	Frequency of so	cores (0-9)	
Score	ALM	IIRR	KHD	LNV	PNP
0	0	0	1	17	0
1	0	0	0	20	0
2	0	0	0	40	0
3	7	0	7	19	13
4	25	2	1	16	7
5	30	7	39	2	24
6	14	18	24	0	10
7	32	18	38	0	19
8	6	39	4	0	23
9	0	27	0	0	18
Fotal	114	111	114	114	114
LSI	5.5	7.4	5.8	2.0	6.4
Screening	N	A	N/A	N	N

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 4.3B: Promising entries with low susceptibility index (<=5.3) and high PI in NSN-H to brown spot, *Kharif* 2022

		Location	n/Frequ	iency o	f scores	s (0 - 9)						,,
P. No.	Br. No	IET No	ALM	IIRR	KHD	PNP	IS	Total	<=3*	PI (<-3)**	<=2 _*	PI (<-5)**
67	2914	30530	4	8	3	3	4.5	4	2	50	3	75
30	2414	28887	3	6	6	3	4.5	4	2	50	2	50
63	2910	30527	3	8	5	3	4.8	4	2	50	3	75
81	2813	30515	6	8	0	5	4.8	4	1	25	2	50
79	2811	30513	5	8	3	4	5.0	4	1	25	3	75
71	2803	30507	7	8	3	3	5.3	4	2	50	2	50
59	2906	30524	3	8	5	5	5.3	4	1	25	3	75
62	2909	30526	5	8	5	3	5.3	4	1	25	3	75
37	2507	30487	5	6	7	3	5.3	4	1	25	2	50
78	2810	30512	5	6	7	3	5.3	4	1	25	2	50
60	2907	30525	4	8	5	4	5.3	4	0	0	3	75
64	2911	30528	4	7	5	5	5.3	4	0	0	3	75
107	CH-45		6	5	3	6	5.0	4	1	25	2	50
113	Rasi		8	4	3	6	5.3	4	1	25	2	50
112	RP-Bio-226		8	7	7	7	7.3	4	0	0	0	0
	LSI		5.5	7.5	5.8	6.4						

(SI-Susceptibility Index; *No. of locations where the entry has scored \leq 5 and \leq 3;**Promising index (PI) based on no. of locations where the entry had scored \leq 3 and \leq 5)

Table 4.4A: Location severity index(LSI) and frequency distribution of brown spot scores of NHSN, Kharif 2022

LDN MND 0 7 0 28 0 0 0 15 44 0 0 29 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 110 112 A N					-		Location	/Freque	Location/Frequency of score (0-9)	of score (0-9)					
0 0	Score	BNK	CHT	CHN	GNV		IIRR	JDP	KHD	LNV		MND	MGD	PSA	REW
0 0	0	0	0	0	0	0	0	0	0	22	0	7	0	0	0
88 18 30 0	1	0	0	0	0	0	0	0	0	0	0	28	22	0	0
88 18 30 0 0 31 3 64 15 44 0 0 34 0 0 3 4 9 15 44 22 44 33 0 78 15 27 60 17 93 4 0 0 2 10 24 20 10 2 0 0 0 29 4 6 0 0 0 0 0 0 0 1 0 1 34 0 1 0 </th <th>2</th> <th>0</th> <th>0</th> <th>3</th> <th>0</th>	2	0	0	3	0	0	0	0	0	0	0	0	0	0	0
0 0 34 0 3 33 4 9 0 29 22 44 33 0 78 15 27 60 17 93 4 0 0 2 10 24 20 10 2 0 0 0 0 0 0 2 41 8 29 4 6 0 0 0 0 0 15 0 15 0 15 0 4 6 3 0 1 0 0 112 112 112 111 111 111 112 110 11 0	3	88	18	30	0	0	0	31	3	64	15	44	59	0	5
22 44 33 0 78 15 27 60 17 93 4 0 0 2 10 24 20 10 2 0	4	0	0	34	0	0	3	33	4	6	0	29	0	0	13
0 0 2 10 24 20 10 2 0 0 0 0 0 0 0 0 0 0 1 34 0 1 0 <th>S</th> <th>22</th> <th>44</th> <th>33</th> <th>0</th> <th>78</th> <th>15</th> <th>27</th> <th>09</th> <th>17</th> <th>93</th> <th>4</th> <th>18</th> <th>3</th> <th>47</th>	S	22	44	33	0	78	15	27	09	17	93	4	18	3	47
2 35 8 43 2 40 1 34 0 1 0 1 0 1 3 4 6 0 1 0 1 0 4 6 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 <th>9</th> <th>0</th> <th>0</th> <th>2</th> <th>10</th> <th>24</th> <th>20</th> <th>10</th> <th>2</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>26</th> <th>44</th>	9	0	0	2	10	24	20	10	2	0	0	0	0	26	44
0 0 2 41 8 29 4 6 0 0 0 0 1 1 1 1 4 6 3 0 1 0 0 112 112 112 111 112 112 112 113 115 116 117 117 3.5 5.8 4.3 7.6 5.5 6.8 4.6 5.8 2.8 4.8 2.6 A N A N N/A N N/A N N N	7	2	35	∞	43	2	40	1	34	0	1	0	0	73	2
0 15 0 4 6 3 0 1 0 112 112 112 111 111 112 112 110 112 3.5 5.8 4.3 7.6 5.5 6.8 4.6 5.8 2.8 4.8 2.6 A N A N/A A N/A N A N A N	8	0	0	2	41	8	29	4	9	0	0	0	0	6	0
112 112 112 111 111 111 112 111 111 111 111 111 111 111 111 111 111 112 110 111 <th>6</th> <th>0</th> <th>15</th> <th>0</th> <th>15</th> <th>0</th> <th>4</th> <th>9</th> <th>3</th> <th>0</th> <th>1</th> <th>0</th> <th>0</th> <th>0</th> <th>1</th>	6	0	15	0	15	0	4	9	3	0	1	0	0	0	1
3.5 5.8 4.3 7.6 5.5 6.8 4.6 5.8 2.8 4.8 2.6 A N A N/A A N/A A N/A N A N	Total	112	112	112	109	112	111	112	112	112	110	112	66	111	112
A N A N/A A N/A N A N/A N A N A N A N A	ISI	3.5	5.8	4.3	9.7	5.5	8.9	4.6	5.8	2.8	4.8	2.6	2.9	8.9	5.3
	Screening	A	Z	A	A	N/A	A	N	N/A	N	A	N	N	A	N

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

		**(?- >) Id	80	82	25	82	82	73	64	09	73	73	73	64	73	73	45	
		* S= >	∞	6	9	6	6	8	7	9	8	8	8	7	8	8	2	
		**(£->) I¶	30	27	36	27	18	36	27	20	18	18	18	18	36	27	6	
rif 2022		* {= >	3	3	4	3	2	4	3	2	2	2	2	2	4	3	1	
ot, Kha		IstoT	10	111	111	111	11	111	11	10	11	11	111	11	11	11	11	
own spo		IS	4.6	4.8	4.9	4.9	4.9	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.9	5.0	6.1	
to bro		KEM	5	5	9	5	5	5	9	9	5	5	4	9	5	4	9	5.3
HSN		VSd	1	9	7	7	7	8	7	9	9	7	8	7	7	7	8	6.8
in N	(6-	ГВИ	3	5	5	5	3	3	5	5	5	5	5	5	3	3	5	4.8
gh PI	Location/Frequency of score (0-9)	КНВ	5	5	7	5	5	3	5	4	5	5	5	3	5	7	5	5.8
ıd hi	of sc	JDP	5	3	3	3	5	3	3	3	4	4	4	4	3	3	4	4.6
.0) aı	uency	иви	9	5	7	5	5	8	7	9	7	9	9	9	4	5	8	6.8
(<=₹	/Freq	CCT	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5.5
index	ation	CNA	9	6	9	∞	7	7	7	ı	7	7	7	7	8	8	6	9.7
oility	T00	СНИ	3	2	2	3	4	5	4	5	5	3	5	4	8	5	7	4.3
eptil		CHL	5	5	3	5	5	5	3	7	3	5	3	5	3	3	7	5.8
v susc		BNK	3	3	3	3	3	3	3	3	3	3	3	3	3	5	3	3.5
Table 4.4B: Promising entries with low susceptibility index (<=5.0) and high PI in NHSN to brown spot, Kharif 2022		IET No.	30571	30620	30562	30619	30590	30591	30613	30586	30616	30561	30566	30567				
4B: Promising		Br. No	3023	3226	3011	3225	3121	3122	3217	3116	3221	3010	3017	3018	Tetep	Rasi	Swarnadhan	TSI
Table 4.		P. No.	65	26	53	25	88	68	17	83	21	52	59	09	112	111	108	

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 3 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> DSN

The entries under donor screening nursery (DSN) were evaluated for their resistance to brown spot at 14 locations with 229 entries across the country. The brown spot resistance screening was done under natural infection conditions in most of the centres except at Bankura, Gangavati, Ludhiana, IIRR and Pusa; where artificial method of screening was followed. The frequency distribution of disease scores and location severity index (LSI) are presented in Table 4.5A. The highest and lowest disease pressure was recorded at Gangavathi (7.6) and Mandya (2.7) respectively. The disease Pressure was high (LSI 6-7) at IIRR (7.0), Almora (6.2), Pusa (6.2); moderate disease pressure (LSI 3-6) at Chatha (5.8), Gagharghat (5.3), Ludhiana (4.9), Bankura (4.8), Jagdalpur (4.6), Rewa (4.4), Sabour (4.1), Lonavala (3.4) and Mugad (3.3). The data from Mandya was not considered for selection of promising entries. The promising donor lines with low disease reaction across the locations were presented in Table 4.5B and that included KNM 12346, CB MSP9 004, CB 17634, CB MSP9 007, VP-R40-SHB, CB MSP9 006, VP-R297-SHB, CB MSP9 003, KNM 14382, AM 773, CB 19107, CB 16710, CB 17135, VP-R243-SHB, 19198, CB MSP9 009, RP Bio Patho-4, NLR-95, NLR 3415, KNM 14445 and CL-442.

Table 4.5A: Location severity index (LSI) and frequency distribution of brown spot scores of DSN, *Kharif* 2022

					Loca	tion/F	reque	ncy of	score	(0-9)				
Score	ALM	BNK	СНТ	GNV	CGT	IIRR	JDP	LNV	LDN	MIND	MGD	PSA	REW	SBR
0	0	0	0	0	0	0	0	32	0	22	0	0	0	0
1	0	0	0	0	0	0	0	0	0	53	13	0	0	25
2	0	0	0	0	0	0	3	0	0	0	0	0	15	0
3	7	65	41	0	0	0	44	93	59	80	173	0	19	106
4	20	0	0	0	0	9	64	28	0	56	0	1	71	0
5	50	121	69	0	168	22	59	66	123	12	42	24	116	59
6	38	0	0	16	52	43	44	1	0	5	0	117	7	0
7	68	43	107	88	0	62	14	6	47	0	1	58	1	28
8	39	0	0	93	9	69	0	0	0	0	0	3	0	0
9	7	0	11	26	0	20	0	0	0	0	0	0	0	11
Total	229	229	228	223	229	225	228	226	229	228	229	203	229	229
LSI	6.2	4.8	5.8	7.6	5.3	7.0	4.6	3.4	4.9	2.7	3.3	6.2	4.4	4.1
Screening	N	A	N	A	N/A	A	N	N	A	N	N	A	N	N

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

f2022
t, Khari
n spo
brow
5
d high PI in DSN to bro
I in
h F
<u>_</u>
l h
and [
(J.
(<=4.5
tibility index (<=4.5) and h
ptibility i
susce
low
P
wit
entries with low suscept
omising
Pr
B :
N.
le 4
able

	**	PI (<-5)	75	85	85	85	75	77	85	77	69	77	62	85	85	77	77	75	85	77	77	77	69	62	<i>L</i> 9	69		
		* \$ =>	6	11	11	11	6	10	11	10	6	10	8	11	11	10	10	6	11	10	10	10	6	8	8	6		-
	**	r(£->) Iq	28	38	31	31	20	46	38	38	38	46	46	31	31	31	31	33	38	38	38	38	38	23	42	38		-
, marra (*£=>	7	5	4	4	9	9	5	S	5	9	9	4	4	4	4	4	5	5	5	5	5	3	5	5		-
hode who w		IstoT	12	13	13	13	12	13	13	13	13	13	13	13	13	13	13	12	13	13	13	13	13	13	12	13		1,
0.10		IS	4.0	4.1	4.2	4.2	4.3	4.4	4.4	4.4	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.3		.,
		SBR	1	5	3	3	3	3	3	1	3	3	3	3	1	5	3	3	3	3	3	3	1	1	5	1	4.1	5
		KEM	5	5	4	5	5	5	5	5	5	4	4	4	5	3	4	5	5	4	5	5	4	5	7	5	4.4	:
TO THE THE		ASA	1	4	5	9	9	9	9	9	9	9	9	5	9	5	9	-	9	9	9	9	9	9	-	5	6.2	-
	(6-0)	WCD	3	3	3	3	1	3	3	3	3	3	3	3	5	3	3	5	3	3	3	3	3	1	3	1	3.3	-
. (score (ГDИ	3	3	3	3	8	5	8	5	3	3	5	3	8	3	5	8	8	8	5	5	8	5	8	5	4.9	
- 1	0ţ	ΛΝΊ	0	0	0	0	3	3	4	5	0	3	3	3	3	0	3	0	3	3	3	5	3	0	4	3	3.4	, ,
	Location/Frequency	1Db	3	4	4	4	4	3	5	4	2	4	2	4	5	4	4	9	5	3	3	3	4	4	3	3	4.6	, c/
	/Freq	ПКК	2	9	5	4	-	4	4	7	5	5	7	4	5	4	7	5	5	5	9	9	7	7	9	9	7.0	1
anna dana	ation	CCT	9	5	9	5	9	5	5	S	5	5	9	5	5	∞	5	5	5	5	5	5	5	5	9	9	5.3	
2	F00	CMΛ	6	8	7	7	6	7	∞	7	9	∞	7	7	~	7	9	7	∞	7	8	8	8	7	7	7	9.7	1 7
		CHL	3	3	5	5	3	7	3	ε	7	3	3	7	3	5	3	3	3	5	5	3	3	7	3	5	5.8	-
		BNK	3	3	5	5	5	3	3	\mathcal{E}	3	3	3	5	5	7	5	7	5	5	3	3	5	5	5	3	4.8	-
		WTV	7	4	4	4	3	3	5	3	9	∞	9	5	4	4	4	5	2	7	4	4	7	9	7	9	6.2	
		Designation	KNM 12346	CB MSP9 004	CB17634	CB MSP9 007	ADT 54	VP-R40-SHB	CB MSP9 006	VP-R297-SHB	CB MSP9 003	KNM 14382	AM 773	CB19107	CB16710	CB17135	VP-R243-SHB	86161	CB MSP9 009	RP-Bio Patho-4	NLR-95	NLR 3415	KNM 14445	CL-442	Tetep	IR-64	TSI	10 144 1 1 1.1. 1.1
2000		P. No.	86	32	23	35	10	125	34	162	31	66	193	2	22	1	152	42	37	75	180	183	100	196	88	221		010

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

TRIAL No.5: SCREENING FOR SHEATH ROT RESISTANCE

> NSN 1

The National Screening Nursery 1 consisting of 338 entries were evaluated against sheath rot disease at 14 locations across the country. Screening was done artificially in some centers viz., Chinsurah, Coimbatore, Navasari, Pusa, Rajendranagar, Raipur and Titabar. In Coimbatore and Rajendranagar, inoculation done by thick inoculum spray before panicle intiation. In Chinsurah, Navasari and Raipur, inoculation done by grain culture plugging at booting stage. It was done under natural conditions at Aduthurai, Bankura, Cuttack, Karjat, Lonavala, Mandya and Nawagam.

High disease pressure was recorded at Chinsurah (6.7) and Raipur (6.2); moderate disease pressure at Navasari (5.9), Cuttack (5.5), Nawagam (5.4), Bnakura (5.0), Coimbatore (4.9), Aduthurai (4.3), Mandya (3.7) and Rajendranagar (3.4). The disease pressure was very low (LSI \leq 3) at Pusa, Lonavala, Bankura and Titabar and hence the data from these centres were not considered for selecting the resistant entries for sheath rot. The frequency distribution of sheath rot scores are presented in the (Table 5.1A) along with location severity indices.

Table 5.1A: Location severity index (LSI) and frequency distribution of sheath rot scores of NSN-1, *Kharif-*2022

					Loca	tion/F	requen	cy of s	cores ((0-9)				
Score	ADT	BNK	CHN	CBT	CTK	KJT	LNV	MND	NVS	NWG	PSA	RPR	RNR	TTB
0	113	232	5	0	47	0	8	5	0	0	22	0	131	0
1	12	29	5	7	0	262	147	81	0	0	95	0	1	213
2	0	0	0	0	0	0	3	8	0	0	0	0	0	0
3	36	66	22	73	8	4	139	121	18	49	156	2	46	65
4	0	0	0	0	0	0	0	5	0	0	0	0	0	0
5	24	10	88	194	104	33	37	59	169	179	51	159	71	20
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	30	0	111	61	64	19	0	22	131	107	3	150	78	5
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	102	0	107	1	69	16	0	33	20	1	0	27	11	0
Total	317	337	338	336	292	334	334	334	338	336	327	338	338	303
LSI	4.3	0.8	6.7	4.9	5.5	2.1	2.3	3.7	5.9	5.4	2.6	6.2	3.4	1.8
Screening method	N	N	A	A	N	N	N	N	A	N	A	A	A	A

(LSI-Location severity Index; N-Natural; A-Artificial)

The selection of promising entries was done based on the disease data of those locations where the disease pressure was moderate to high. A few promising entries with high promising index are presented in the Table 5.1B they include IET# 30035, 29564, 29268, 30008, 29578,30020, 30252, 30247, 29349, 30022, 29741, 29549, 29409, 29411 and 30032.

Table 5.1B: Promising entries with low susceptibility index (≤ 4.0) and high PI in NSN-1 to Sheath rot, *Kharif*-2022

				Locat	ion/F	reque	ency o	of scor	res (0-	·9)					*		*
S.No.	Entry no.	IET No.	ADT	CHN	CBT	CTK	MND	NVS	NWG	RPR	RNR	SI	Total	<=3*	PI (<-3)**	* S =>	PI (<-5)**
14	4614	30035	1	3	3	-	4	5	3	7	0	3.3	8	5	63	7	88
253	6001	29564	0	0	3	-	3	5	5	7	3	3.3	8	5	63	7	88
77	4006	29268	-	7	3	0	1	5	5	5	0	3.3	8	4	50	7	88
4	4604	30008	0	0	5	7	1	7	5	5	0	3.3	9	4	44	7	78
255	6003	29578	0	1	5	0	5	7	7	5	0	3.3	9	4	44	7	78
8	4608	30020	0	3	7	-	1	7	5	5	0	3.5	8	4	50	6	75
241	5810	30252	0	1	5	-	1	9	7	5	0	3.5	8	4	50	6	75
242	5811	30247	0	5	1	-	1	7	5	9	0	3.5	8	4	50	6	75
205	4302	29349	0	7	5	0	3	9	3	5	0	3.6	9	5	56	7	78
9	4609	30022	3	5	5	5	2	3	3	7	0	3.7	9	5	56	8	89
200	4132	29741	0	7	5	5	1	5	3	7	0	3.7	9	4	44	7	78
237	5806	29549	0	5	3	5	1	7	5	7	0	3.7	9	4	44	7	78
36	4506	29409	0	5	5	7	1	5	5	5	0	3.7	9	3	33	8	89
31	4501	29411	0	3	3	5	1	7	5	5	5	3.8	9	4	44	8	89
20	4620	30032	0	5	5	7	2	7	3	5	0	3.8	9	4	44	7	78
328	TN1		-	7	5	9	5	7	7	7	7	6.8	8	0	0	2	25
	LSI		4.3	6.7	4.9	5.5	3.7	5.9	5.4	6.2	3.4		•	•	•		

(SI-Susceptibility Index;*No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NSN-2

The NSN -2 nursery consisting of 571 entries was evaluated only at 8 locations and screening was done under natural conditions at Aduthurai, Bankura, Mandya and Nawagam. Artificial screening was done at Coimbatore, Navasari, Pusa and Raipur. High disease pressure was recorded at Raipur (6.3), Aduthurai (6.2), Navasari (5.8) and Nawagam (5.7); moderate disease pressure at Coimabtore (4.1) and Mandya (4.2) and very low disease pressure at Pusa and Bankura and hence the data from these centres were not considered for selecting the resistant entries for sheath rot (Table 5.2A).

The selection of promising entries was done based on the disease data of those locations where the disease pressure was moderate to high. A few promising entries with high promising index are presented in the Table 5.2B. These entries are IET# 30791, 31106, 31118, 30984, 30832, 31047 and 31032.

Table 5.2A: Promising entries with low susceptibility index (≤ 4.0) and high PI in NSN-2 to Sheath rot disease, *Kharif-*2022

Caara			Locatio	n/Freque	icy of scor	es (0-9)		
Score	ADT	BNK	CBT	MND	NVS	NWG	PSA	RPR
0	68	463	0	15	0	0	14	0
1	22	0	56	117	0	0	176	0
2	0	0	0	3	0	0	0	0
3	70	56	216	169	42	38	279	8
4	0	0	0	1	0	0	0	0
5	49	52	223	113	281	296	69	239
6	0	0	0	0	0	0	0	0
7	24	0	75	53	232	218	3	269
8	0	0	0	0	0	0	0	0
9	280	0	0	87	15	6	0	55
Total	513	571	570	558	570	558	541	571
LSI	6.2	0.7	4.1	4.2	5.8	5.7	2.5	6.3
Screening method	N	N	A	N	A	N	A	A

Table 5.2B: Promising entries with low susceptibility index (\leq 4.0) and high PI in NSN-2 to Sheath rot, *Kharif-*2022

			Locat	tion/Fr	equen	cy of s	cores ((0-9)				*		*
P.No	Entry No.	IET No.	ADT	CBT	MND	NVS	NWG	RPR	SI	Total	<=3*	PI (<-3)*:	* \$=>	PI (<-5)**
99	5137	31032	1	3	0	7	3	3	2.8	6	5	83	5	83
117	5409	31047	3	3	1	5	3	5	3.3	6	4	67	6	100
2	4402	30832	0	3	3	5	5	5	3.5	6	3	50	6	100
291	5044	30984	0	3	3	5	5	5	3.5	6	3	50	6	100
311	6102	31118	0	3	1	5	7	5	3.5	6	3	50	5	83
234	5912	31106	0	5	1	5	5	5	3.5	6	2	33	6	100
365	4232	30791	0	5	1	5	5	5	3.5	6	2	33	6	100
134	5603	31060	3	3	3	3	5	5	3.7	6	4	67	6	100
343	4210	30770	3	3	1	5	5	5	3.7	6	3	50	6	100
158	5627	31080	3	1	1	7	5	5	3.7	6	3	50	5	83
385	4253	30811	1	3	1	5	7	5	3.7	6	3	50	5	83
245	5923	31115	9	1	1	3	-	5	3.8	5	3	60	4	80
523	3629	30661	-	3	1	3	7	5	3.8	5	3	60	4	80
314	6105	31121	1	5	1	5	-	7	3.8	5	2	40	4	80
159	5628	31081	0	5	1	5	3	9	3.8	6	3	50	5	83
422	3910	30711	0	3	3	7	5	5	3.8	6	3	50	5	83
127	5419	31055	0	1	3	7	5	7	3.8	6	3	50	4	67
142	5611	31067	0	3	1	7	7	5	3.8	6	3	50	4	67

			Locat	ion/Fr	equen	cy of s	cores (0-9)				*		*
P.No	Entry No.	IET No.	ADT	CBT	MND	NVS	NWG	RPR	SI	Total	<=3*	PI (<-3)**	*\$=>	PI (<-5)**
313	6104	31120	0	3	1	7	5	7	3.8	6	3	50	4	67
88	5126	31023	0	5	3	5	5	5	3.8	6	2	33	6	100
32	4432	30861	0	1	5	7	5	5	3.8	6	2	33	5	83
42	4443	30871	0	5	1	5	5	7	3.8	6	2	33	5	83
258	5011	30954	0	7	1	5	5	5	3.8	6	2	33	5	83
345	4212	30772	0	5	1	7	5	5	3.8	6	2	33	5	83
368	4235	30794	0	1	5	5	5	7	3.8	6	2	33	5	83
559	TI	N1	9	5	5	7	7	7	6.7	6	0	0	2	33
558	HR	-12	9	3	9	7	7	9	7.3	6	1	17	1	17
	LSI		6.2	4.1	4.2	5.8	5.7	6.3						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NSN-H

Screening for sheath rot under NSN- hills was conducted at only at Karjat and Lonavala under natural infection condition. The location severity index at Karjat was 4.7 and at in Lonavala 1.6. The frequency distribution of scores at Karjat centre indicated that, 26 entries showed 1 score, 21 entries showed score of 7 and 11 entries scored 9 and in Lonavala, all entries showed very less score of below 5 (Table 5.3A).

Table 5.3A: Promising entries with low susceptibility index (\leq 4.0) and high PI in NSN-H to Sheath rot disease. *Kharif-*2022

C	Location/Frequen	ncy of scores (0-9)
Score	KJT	LNV
0	0	12
1	26	65
2	0	1
3	1	31
4	0	0
5	13	5
6	0	0
7	21	0
8	0	0
9	11	0
Total	72	114
LSI	4.7	1.6
Screening	N	N

> NHSN

The NHSN trial consisted of 112 entries including checks. The entries were evaluated at 14 locations representing different geographical regions. The frequency distribution of disease scores and the LSI are presented in Table 5.4A. The disease pressure was very high at Aduthurai (8.3); high at Raipur (6.8), Navasari (5.9), Nawagam (5.4) and Coimbatore (5.3); moderate disease pressure at Chinsurah (4.8), Mandya (4.7), Karjat (3.5) and Cuttack (3.3). The disease pressure was very low (LSI≤3) at Pusa, Rajendranagar, Titabar and Bankura, data from these centres were not considered for selecting the resistant entries.

The promising entries were selected based on the disease data of those locations where the disease pressure was moderate and high. The promising entries that had an SI less than 4.5 are IET Nos.30306, 30578, 30604, 30601, 30630, 30606, 30577, 30602, 30608, 30611 and 30585 (Table 5.4B).

Table 5.4A: Location severity index (LSI) and frequency distribution of Sheath rot scores of

NHSN, Kharif' 2022

111511, 111111					Loca	tion/F	requer	ncy of	scores	(0-9)				
Score	ADT	BNK	CHN	CBT	CTK	KJT	TNA	MND	NVS	NWG	PSA	RPR	RNR	TTB
0	1	78	5	0	38	0	7	0	0	0	1	0	41	0
1	2	13	12	0	0	55	36	4	0	0	33	0	1	74
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	3	20	18	19	1	6	63	38	5	5	57	0	41	27
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	5	1	41	59	28	9	6	51	51	79	20	36	23	4
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	4	0	28	31	13	4	0	10	55	26	0	53	4	1
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	91	0	8	3	5	21	0	9	1	2	0	23	2	0
Total	106	112	112	112	85	95	112	112	112	112	111	112	112	106
LSI	8.3	0.7	4.8	5.3	3.3	3.5	2.3	4.7	5.9	5.4	2.7	6.8	2.5	1.7
Screening	N	N	A	A	N	N	N	N	A	N	A	A	A	A

Table 5.4B: Promising entries with low susceptibility index (\leq 4.0) and high PI in NSN-H to Sheath rot disease, *Kharif-*2022

				Lo	cation	/Freq	uency	of sco	ores (0)-9)			Te		*		*
S.No.	Entry No.	IET No.	ADT	CHN	CBT	CTK	KJT	MND	NVS	NWG	RPR	SI	Total	<=3*	PI (<-3)**	*\$=>	PI (<-5)**
6	3206	30603	9	3	3	0	1	1	3	5	7	3.6	9	6	67	7	78
74	3107	30578	5	1	3	0	1	5	9	3	7	3.8	9	5	56	7	78
7	3207	30604	9	1	5	0	1	3	5	5	7	4.0	9	4	44	7	78
3	3203	30601	3	0	5	7	1	3	5	7	7	4.2	9	4	44	6	67
40	3314	30630	9	5	3	0	1	5	5	5	5	4.2	9	3	33	8	89
9	3209	30606	5	3	5	0	1	5	7	7	5	4.2	9	3	33	7	78
73	3106	30577	9	1	5	-	1	3	5	5	5	4.3	8	3	38	7	88
5	3205	30602	1	3	3	5	5	3	5	5	9	4.3	9	4	44	8	89
12	3212	30608	3	5	5	3	1	5	5	5	7	4.3	9	3	33	8	89
15	3215	30611	9	3	7	0	1	5	5	5	5	4.4	9	3	33	7	78
82	3115	30585	9	5	3	0	1	5	5	5	7	4.4	9	3	33	7	78
100	TN	N1	9	7	7	0	5	7	7	7	9	6.4	9	1	11	2	22
107	Co-	-39	9	7	5	7	9	5	7	7	7	7.0	9	0	0	2	22
	LSI	·	8.3	4.8	5.3	3.3	3.6	4.7	6.0	5.5	6.8						

(SI-Susceptibility Index;*No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> DSN

The DSN trial consisted of 229 entries including checks were screened at 12 locations across the country. The frequency distribution of disease scores and the LSI are presented in Table 5.5A. The nursery was screened under natural conditions at Aduthurai, Bankura, Cuttack, Karjat, Lonavala, Mnadya, Nawagam and artificially done in remaining locations viz., Coimbattore, Navasari, Pusa, Rajendranagar and Raipur. Very high disease pressure was at Aduthurai (7.3); high disease pressure was recorded at Raipur (6.1), Navasari (5.8), Nawagam (5.3). Moderate disease pressure was recorded at Mnadya (4.5), Rajendranagar (4.2), Coimbattore (4.0) and very low disease pressure was observed Pusa (2.6), Cuttack (2.5), Lonavala (2.3), Karjat (2.0) and Bankura (0.6) during the season.

The selection of promising entries were done based on the data of those locations where the disease pressure was moderate to high. The promising entries with SI≤5 are presented in the Table 5.5B. Some of the promising lines were 19208, CB 18573, RP-Patho-7, 19198, CB MSP9010 and VP-R36-SHB.

Table 5.5A: Location severity index (LSI) and frequency distribution of Sheath rot scores of DSN. *Kharif* 2022

DSN, Knarij	2022			La	ation/L	requen	or of a	20 Mag (f)	0)			
		<u> </u>		LUC	cation/r	requen	icy of so	cores (u	-9)	<u> </u>	<u> </u>	
Score	ADT	BNK	CBT	CTK	KJT	LNV	MND	NVS	NWG	PSA	RPR	RNR
0	22	100	0	0.5	0	0		0		-	0	61
0	23	188	0	95	0	9	0	0	0	5	0	61
1	2	0	13	0	161	70	50	0	0	68	0	4
2	0	0	0	0	3	0	0	0	0	0	0	0
3	9	32	101	5	20	146	57	11	22	94	3	33
4	0	0	0	0	0	0	0	0	0	0	0	0
5	17	9	104	56	5	2	58	118	146	36	111	46
6	0	0	0	0	0	0	0	0	0	0	0	0
7	6	0	11	15	8	0	28	94	61	0	96	71
8	0	0	0	0	0	0	0	0	0	0	0	0
9	149	0	0	3	12	0	35	6	0	0	19	14
Total	206	229	229	174	209	227	228	229	229	203	229	229
LSI	7.3	0.6	4.0	2.5	2.0	2.3	4.5	5.8	5.3	2.6	6.1	4.2
Screening	N	N	A	N	N	N	N	A	N	A	A	A

Table 5.5B: Promising entries with low susceptibility index (≤ 4.0) and high PI in DSN to Sheath rot disease, *Kharif-*2022

		Lo	cation	/Freq	uency	of sco	ores (0)-9)				*		*
P. No.	Designation	ADT	CBT	MND	NVS	NWG	RPR	RNR	SI	Total	<=3*	PI (<-3)**	<= 2 *	PI (<-5)**
46	19208	-	1	1	5	5	5	0	2.8	6	3	50	6	100
18	CB18573	5	1	1	5	3	9	0	3.4	7	4	57	6	86
66	RP-Patho-7	0	1	3	5	5	5	7	3.7	7	3	43	6	86
42	19198	-	5	1	5	5	7	0	3.8	6	2	33	5	83
38	CB MSP9 010	9	3	1	5	5	5	0	4.0	7	3	43	6	86
123	VP-R36-SHB	0	3	3	5	7	5	5	4.0	7	3	43	6	86
87	C101 A51	5	3	1	5	7	5	3	4.1	7	3	43	6	86
170	VP-D6-SHB	5	3	1	7	5	5	3	4.1	7	3	43	6	86
21	CB17537	-	3	3	5	7	7	0	4.2	6	3	50	4	67
41	CB 06 535	-	5	1	5	7	7	0	4.2	6	2	33	4	67
47	19273	-	5	1	7	5	7	0	4.2	6	2	33	4	67
168	VP-D4-SHB	9	3	1	5	3	9	0	4.3	7	4	57	5	71
34	CB MSP9 006	9	1	1	5	5	9	0	4.3	7	3	43	5	71
111	CRR 771-B- B-18	9	3	1	5	5	7	0	4.3	7	3	43	5	71

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

		Lo	cation	/Freq	uency	of sco	res (0	-9)				*		*
P. No.	Designation	ADT	CBT	MND	NVS	NWG	RPR	RNR	SI	Total	<=3*	PI (<-3)**	*\$=>	PI (<-5)**
167	VP-D1-SHB	9	3	1	7	5	5	0	4.3	7	3	43	5	71
212	CGR-16-54	9	3	1	5	5	7	0	4.3	7	3	43	5	71
48	19082	0	5	3	5	7	5	5	4.3	7	2	29	6	86
208	CGR-8	9	5	1	5	5	5	0	4.3	7	2	29	6	86
136	VP-R111- SHB	-	3	1	3	7	5	7	4.3	6	3	50	4	67
55	MS-ISM- DIG-10	-	5	5	5	3	3	5	4.3	6	2	33	6	100
59	UB 1066	-	5	3	3	5	5	5	4.3	6	2	33	6	100
44	19279	-	5	3	5	7	5	1	4.3	6	2	33	5	83
20	CB18536	9	3	1	5	3	7	3	4.4	7	4	57	5	71
95	KNM 13489	9	3	1	5	5	5	3	4.4	7	3	43	6	86
214	CGR-19-68	9	3	1	5	5	5	3	4.4	7	3	43	6	86
45	19081	-	5	5	5	7	5	0	4.5	6	1	17	5	83
218	Vikramarya	9	5	7	5	5	9	5	6.4	7	0	0	4	57
	LSI	7.3	4.0	4.5	5.8	5.3	6.1	4.2						

(SI-Susceptibility Index;*No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

TRIAL No.6: SCREENING FOR BACTERIAL BLIGHT RESISTANCE

> NSN-1

The National Screening Nursery-1 (NSN-1) consisted of 338 entries including 78 different checks. The entries were evaluated at 28 locations across the country. The entries were evaluated through artificial inoculation at all the locations except Mandya where the entries were screened under natural conditions. The frequency distribution of the disease scores and location severity indices are presented in Table 6.1A. The disease pressure was very highhigh (LSI> 8) at Maruteru (8.2); high (LSI-6-8) at Pattambi (7.4), Chinsurah (6.7), Titabar (6.6), Cuttack (6.6), New Delhi (6.5), Chiplima (6.4), Ludhiana (6.3), IIRR (6.3), Pantnagar (6.2), Jagtiyal (6.1) and Navsari (6.1); moderate (LSI-3-6) at Raipur (5.9), Gangavathi (5.8), Nawagam (5.7), Aduthurai (5.7), Karjat (5.6), Varanasi (5.2), Chatha (5.2), Mashodha (5.1), Nellore (5.1), Sabour (5.0), Coimbatore (4.2), Warangal (3.7) and Moncompu (3.4) and very low (LSI < 3) at Karaikal (2.6), Patna (1..6) and Mandya (0.3).

For selection of the promising entries, data of Karaikal, Patna and Mandya were not considered as the disease pressure was very low (LSI below 3). The promising entries which exhibited an SI of less than 5 and which showed a disease score of 5 at or more than 65% locations are presented in Table 6.1B. Some of the promising entries which performed better than resistant check Improved Samba Mahsuri and scored an SI less than 4.8 and showed a disease score of 5 at more than 65% locations were IET # 29861, 29748, 30827, 30037, 29214, 29000, 30241, 29576, 29574, 29935, 30827, 30830, 28997, 29878 and 29549. Some other promising entries which scored an SI of less than or equal to 5 were IET # 29714, 30240, 30828, 28524, 29539, 30822 and 30116.

> NSN-2

The National Screening Nursery-2 (NSN-2) consisted of 571 entries including 59 different checks. The entries were evaluated at 21 locations across the country. The entries were evaluated using artificial inoculation at all the centres except Mandya where the entries were screened under natural conditions. The frequency distribution of the disease scores and location severity indices are presented in Table 6.2A. The disease pressure was very high (LSI >8) at Maruteru (8.9); high (LSI- 6-8) at Pantnagar (7.3), Pattambi (7.3), Gangavathi (7.2), Raipur (6.6), IIRR (6.5), Navsari (6.2) and Mashodha (6.2); moderate (LSI- 3-6) at Ludhiana (5.8), Nawagam (5.8), Cuttack (5.8), Varanasi (5.8), Titabar (5.5), Chatha (5.3), Coimbatore (5.3), Chiplima (5.1), Aduthurai (5.0), Sabour (4.4) and Moncompu (3.1) and very low (LSI < 3) at Patna (2.5) and Mandya (0.2).

For selection of the promising entries, data of Patna and Mandya were not considered as the disease pressure was very low (LSI below 3). The promising entries with SI less than 5 and the entries which exhibited a score of 5 at or more than 70% of the locations are presented in Table 6.2B. Some of the highly promising entries which performed better than resistant check Improved Samba Mahsuri and which exhibited an SI of less than 4.6 and showed a disease score of 5 at more than 70% test locations are IET # 30835, 30971, 30984, 30755, 31140, 30819, 30881, 30831, 30886, 30740 and 30880. Some other promising entries which score an SI of less than 5 were IET # 30772, 30983, 30753, 30945, 30756, 31110, 30878, 30817 and 30968.

Table 6.1A: Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN 1, *Kharif* 2022

Score					Loca	tion/F	requei	ncy of	scores	(0-9)				
	ADT	CHT	CHN	CHP	CBT	CTK	GNV	IIRR	JGL	KRK	KJT	LDN	MND	MTU
0	18	0	0	0	0	0	0	0	0	23	0	0	292	0
1	30	4	0	5	23	0	1	28	8	117	1	0	13	0
2	0	0	0	0	1	0	0	0	0	0	0	0	13	0
3	52	92	48	15	114	31	16	24	24	119	100	82	13	2
4	0	0	0	0	0	0	0	0	0	0	1	0	0	0
5	57	127	55	117	165	118	182	1	96	63	65	38	3	15
6	0	0	0	0	0	0	0	0	1	0	0	0	0	0
7	56	100	129	133	34	66	116	271	179	13	142	130	0	87
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	104	14	106	61	0	119	21	14	22	1	27	87	0	204
Total	317	337	338	331	337	334	336	338	330	336	336	337	334	308
LSI	5.7	5.2	6.7	6.4	4.2	6.6	5.8	6.3	6.1	2.6	5.6	6.3	0.3	8.2
Screening	A	A	A	A	A	A	A	A	A	A	A	A	N	A

(LSI-Location severity Index; N-Natural; A-Artificial)

(Conti.) Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN 1, *Kharif* 2022

Score					Locat	ion/Fr	equen	cy of s	cores	(0-9)				
	MSD	MNC	NVS	NWG	NLR	NDL	PNT	PTN	PTB	RPR	SBR	TTB	VRN	WGL
0	0	85	0	0	0	0	0	112	0	0	10	0	0	0
1	0	34	1	0	33	11	8	111	0	0	53	0	0	99
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	56	57	19	33	101	0	30	84	0	19	75	23	46	101
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	201	91	123	158	70	129	112	26	42	157	54	93	202	66
6	0	0	0	0	0	0	0	0	1	0	0	0	0	0
7	74	68	182	138	77	124	117	4	178	156	81	118	78	43
8	0	0	0	0	0	0	0	0	1	0	0	0	0	0
9	1	3	13	7	52	74	68	1	113	6	65	82	2	22
Total	332	338	338	336	333	338	335	338	335	338	338	316	328	331
LSI	5.1	3.4	6.1	5.7	5.1	6.5	6.2	1.6	7.4	5.9	5.0	6.6	5.2	3.7
Screening	A	A	A	A	A	A	A	A	A	A	A	A	A	A

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

Table 6.1B: NSN 1 entries with low susceptibility index (SI <5) with score <5 to BB at more than 65% of the locations

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored \preceq 3 and \preceq 5)

Table 6.2A: Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN 2, *Kharif* 2022

<u>scores or 1451</u>	, , .	<i>y</i>		Loca	tion/Fr	equenc	y of sco	res (0-9	9)		
Score	ADT	CHT	CHP	CBT	CTK	GNV	IIRR	LDN	MND	MTU	MSD
0	61	0	0	0	0	0	0	0	497	0	0
1	39	0	17	22	0	1	34	0	25	0	0
2	0	0	0	0	0	0	0	0	18	0	0
3	111	94	139	131	45	2	26	154	15	0	41
4	0	0	0	0	0	0	0	0	0	0	0
5	95	284	226	218	297	63	10	115	3	2	241
6	0	0	0	0	0	0	0	0	0	0	0
7	70	176	128	149	178	375	444	198	0	20	187
8	0	0	0	1	0	0	0	0	0	0	0
9	137	6	35	50	45	118	27	94	0	419	90
Total	513	560	545	571	565	559	541	561	558	441	559
LSI	5.0	5.3	5.1	5.3	5.8	7.2	6.5	5.8	0.2	8.9	6.2
Screening	A	A	A	A	A	A	A	A	N	A	A

(LSI-Location severity Index; N-Natural; A-Artificial)

(Conti.) Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN 2, Kharif '2022

	Location/Frequency of scores (0-9) MNC NVS NWG PNT PTN PTB RPR SBR TTB VRN 155 0 0 0 59 1 0 89 0 0 70 0 0 17 187 0 0 33 1 0 0 0 0 0 0 0 0 0 0 79 27 26 68 166 8 27 109 97 22 0 0 0 0 0 0 0 0 118 194 292 68 132 98 151 140 266 304 0 0 0 0 0 0 0 0 0													
Score	MNC	NVS	NWG	PNT	PTN	PTB	RPR	SBR	TTB	VRN				
0	155	0	0	0	59	1	0	89	0	0				
1	70	0	0	17	187	0	0	33	1	0				
2	0	0	0	0	0	0	0	0	0	0				
3	79	27	26	68	166	8	27	109	97	22				
4	0	0	0	0	0	0	0	0	0	0				
5	118	194	292	68	132	98	151	140	266	304				
6	0	0	0	0	0	0	0	0	0	0				
7	91	331	226	58	8	263	298	153	157	185				
8	1	0	0	0	0	0	0	0	0	0				
9	9	18	14	344	1	192	95	44	37	19				
Total	523	570	558	555	553	562	571	568	558	530				
LSI	3.1	6.2	5.8	7.3	2.5	7.3	6.6	4.4	5.5	5.8				
Screening	A	A	A	A	A	A	A	A	A	A				

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

Table 6.2B: NSN 2 entries with low susceptibility index (SI <5) with score <5 to BB at more than 70% of the locations

							•			Loc	ations	Locations/Score (0-9)	e (0-5	<u>(</u>								4	ą
P. No.	Br. No.	LET No.	TQA	CHL	СНЬ	CBL	CLK	CNA	ІІВВ	NaT	UTM	dSM	NNC	SAN	DMN	LNd	PTB	КРК	SBR	TTB VRV	S	·(£->) I¶	·(<-5) I4
5	4405	30835	1	5	3	3	5	7	5	3	6	7	0	7	5	1	5	5 (0	3 3	4.1	47.4	1 78.9
277	5030	30971	0	7	3	5	5	7	1	3	-	7	0	5	7	1	6	5 (0	3 5	4.1	44.4	1 72.2
291	5044	30984	3	7	3	1	7	7	3	3	6	3	3	5	5	1	7	3 (0	3 5	4.1		57.9 73.7
473	3962	30755	3	3	5	1	7	7	7	3	6	5	1	5	5	1	5	5 (0 5	5 3	4.2	42.1	1 78.9
479	6205	31140	3	1	3	3	3	7	3	3	-	5	1	7	7	5	7	5 (0 5	5 5	4.2	47.1	1 76.5
393	4261	30819	3	3	5	5	7	7	7	3	-	5	0	5	5	5	5	3 (0 5	5 5	4.3	33.3	83.3
53	4454	30881	0	5	5	5	5	7	7	3	7	5	0	5	5	7	5	5 (0	3 -	4.4	1 27.8	8 77.8
1	4401	30831	0	5	5	5	3	7	7	5	6	5	0	7	5	3	5) /	0	3 3	4.4	36.8	3 73.7
59	4460	30886	3	3	3	5	5	5	7	7		5	0	3	7	3	3	6	5	3 5	4.5	5 44.4	177.8
458	3947	30740	0	3	7	5	7	7	6	5	-	3	0	7	5	5	5	5 (0 5	5 3	4.5		33.3 72.2
52	4453	30880	5	3	5	3	3	5	3	3	7	5	0	5	5	7	5	6	5 3	5 5	4.5	36.8	84.2
345	4212	30772	1	5	5	3	7	6	7	5	-	5	1	5	5	1	7	3	3 5	5 5	4.6	33.3	3 77.8
290	5043	30983	3	7	3	5	6	6	1	3	5	5	0	5	5	3	7	2	0	7 5	4.6	36.8	3 73.7
471	3960	30753	7	5	3	3	5	5	7	5	6	3	0	7	5	3	5) /	0 5	5 3	4.6	36.	36.8 73.7
248	5001	30945	0	5	5	5	5	7	7	5	6	5	0	7	5	5	3	5 (0	3 7	4.0	4.6 26.3 73.	3 73.7
474	3963	30756	3	ı	3	3	5	7	7	3	6	5	0	7	5	1	5	5	5 5	5 7	4.7	7 33.3	3 72.2
239	5917	31110	5	5	7	3	3	7	7	5	-	5	0	5	5	6	5	7 (0 3		4.8	3 29.4	1 70.6
50	4451	30878	3	5	5	3	5	7	7	7	-	5	0	3	5	6	5	7	1 5	5 5	4.8	8 27.8	3 72.2
391	4259	30817	3	3	5	5	5	7	7	3	-	5	5	5	5	5	5	5	5 5	5 5	4.9	16.7	7 88.9
274	5027	30968	0	3	3	5	5	5	7	5	6	5	0	7	5	3	6	5	5 5	5 7	4.9	26.3	3 73.7
559	TN1 (S check)	(k)	6	7	6	7	6	6	7	6	6	6	1	6	6	6	7	6	5	5 5	7.9		0.0 16.7
267	RPBio 226 (R Check)	R Check)	6	w	က	w	က	-	1	8	6	8	,	8	v	v	_	w.	w 4	3	4.6	5 41.2	82.4
(SI-Single	(SI-Suscentibility Index: *Promising index (PI): Der	romising in	lov (D)	7. Dar	montage	of Joe	locations	boood	24 40	of looption	4:000	thought	the eat	ry bod	00,000	/2 and	(5/1						

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NSN-Hills

The National Screening Nursery-Hills (NSN-Hills) consisted of 114 entries including 35 different checks. The entries were evaluated at 4 locations across the country. The entries were evaluated using artificial inoculation at all the four locations. The frequency distribution of the disease scores and location severity indices are presented in Table 6.3A. The disease pressure was high (LSI- 6-8) at Pantnagar (7.5), IIRR (7.0) and Karjat (6.1) and was moderate (LSI- 3-6) at Cuttack (5.8). For selection of best entries, the disease reactions from all the locations were considered. The promising entries which showed an SI of less or equal to 5.5 and which exhibited a disease score of 5 at or more than 50% locations are presented in Table 6.3B. None of the entries performed better than resistant check Improved Samba Mahsuri. **Some of the promising entries were IET** # 30519, 28206 (R), 30502, 28896, 28907, 28217, 30518, 28884, 29640 and 30508.

Table 6.3A: Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN Hills. *Kharif* 2022

Score		Location/Frequen	cy of scores (0-9)	
	CTK	IIRR	KJT	PNT
0	0	0	0	0
1	0	0	0	1
2	0	0	0	0
3	13	4	16	1
4	0	0	0	0
5	51	0	12	20
6	0	0	0	0
7	35	102	32	37
8	0	0	0	0
9	11	8	12	55
Total	110	114	72	114
LSI	5.8	7.0	6.1	7.5
Screening	A	A	A	A

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 6.3B: NSN Hills entries with low susceptibility index (SI \leq 5.5) with score \leq 5 to BB at or more than 50% of the locations

				Loca	tions/Scor	e (0-9)		*	*
P. No.	Br. No.	IET No.	СТК	IIRR	KJT	PNT	SI	PI (<-3)*	PI (<-5)*
86	2818	30519	3	7	3	5	4.5	50.0	75.0
9	2302	28206 (R)	3	7	-	5	5.0	33.3	66.7
53	2523	30502	3	7	-	5	5.0	33.3	66.7
24	2408	28896	3	7	3	7	5.0	50.0	50.0
1	2601	28907	5	7	7	1	5.0	25.0	50.0
2	2602	28217	5	3	9	5	5.5	25.0	75.0
85	2817	30518	5	7	5	5	5.5	0.0	75.0
8	2301	28884	5	7	3	7	5.5	25.0	50.0
27	2411	29640	7	3	7	5	5.5	25.0	50.0
72	2804	30508	5	7	3	7	5.5	25.0	50.0
102	TN1 (S Ch	eck)	9	7	7	9	8	0.0	0.0
112	RPBio 226	(R Check)	3	3	3	3	3	100.0	100.0

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored \leq 3 and \leq 5)

> NHSN

The National Hybrid Screening Nursery (NHSN) consisted of 112 entries including 30 different checks. The entries were evaluated at 23 locations across the country. The entries were evaluated using artificial inoculation at all the centres except at Arundhatinagar and Mandya where the entries were screened under natural conditions. The frequency distribution of the disease scores and location severity indices are presented in Table 6.4A. The disease pressure was very high (LSI > 8) at Maruteru (8.9); high (LSI-6-8) at New Delhi (7.4), Gangavathi (7.3), Pantnagar (7.2), Pattambi (7.1), Raipur (6.7), Chinsurah (6.5), Aduthurai (6.3), Ludhiana (6.2), Nawagam (6.1) and Navsari (6.0); moderate (LSI-3-6) at Titabar (5.8), Chatha (5.7), Cuttack (5.7), Mashodha (5.5), Coimbatore (5.5), IIRR (5.3), Varanasi (5.3), Moncompu (4.6) and Karjat (4.3) and very low (LSI < 3) at Arundhatinagar (2.6), Patna (2.5) and Mandya (0.5). The promising entries with SI less than 5.5 and which exhibited a score of 5 at or more than 55% of the locations are presented in Table 6.4B. Two entries viz., IET # 30603 and 30620 performed better than the resistant check Improved Samba Mahsuri and exhibited an SI of less than 4.7. Other promising entries were which showed an SI of less than 5.5 were IET # 30605, 30582, 30577, 30585, 30593, 30594, 30578, 30602, 30615, 30575 and 30610.

Table 6.4A: Location severity index (LSI) and frequency distribution of bacterial blight

scores of NHSN, Kharif' 2022

c c		J	022	Loca	ation/I	reque	ncy of	scores	(0-9)			
Score	ADT	ARD	CHT	CHN	CBT		GNV	IIRR	` ´	LDN	MND	MTU
0	0	0	0	1	0	0	0	0	0	0	85	0
1	4	11	0	0	0	0	0	26	0	0	12	0
2	0	0	0	0	0	0	0	0	0	0	5	0
3	19	22	11	24	19	15	3	8	61	21	6	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	16	4	54	16	52	52	9	1	17	31	4	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	36	0	45	29	34	37	66	70	13	30	0	6
8	0	0	0	0	0	0	0	0	0	0	0	0
9	31	0	2	42	7	8	34	4	7	28	0	89
Total	106	37	112	112	112	112	112	109	98	110	112	95
LSI	6.3	2.6	5.7	6.5	5.5	5.7	7.3	5.3	4.3	6.2	0.5	8.9
Screening	A	N	A	A	A	A	A	A	A	A	N	A

(Conti.) Location severity index (LSI) and frequency distribution of bacterial blight scores of NHSN, *Kharif* 2022

Caara	_]	Location	/Frequ	ency of	scores	(0-9)			
Score	MSD	MNC	NVS	NWG	NDL	PNT	PTN	PTB	RPR	TTB	VRN
0	0	18	0	0	0	0	23	0	0	0	0
1	0	5	0	0	1	2	32	0	1	1	3
2	0	0	0	0	0	0	0	0	0	0	0
3	15	15	7	6	0	2	26	1	3	18	19
4	0	0	0	0	0	0	0	0	0	0	0
5	60	31	45	46	19	20	23	25	21	43	52
6	0	0	0	0	0	0	0	0	0	0	0
7	29	37	55	50	45	46	8	52	73	35	32
8	0	0	0	0	0	0	0	0	0	0	0
9	8	6	5	10	46	42	0	33	14	14	5
Total	112	112	112	112	111	112	112	111	112	111	111
LSI	5.5	4.6	6.0	6.1	7.4	7.2	2.5	7.1	6.7	5.8	5.3
Screening	A	A	A	A	A	A	A	A	A	A	A

(LSI-Location severity Index; N-Natural; A-Artificial)

> DSN

The Donor Screening Nursery (DSN) consisted of 229 entries including 25 different checks. The entries were evaluated at 23 locations across the country. The entries were evaluated using artificial inoculation at all the centres except at Mandy where the entries were evaluated under natural conditions. The frequency distribution of the disease scores and location severity indices are presented in **Table 6.5A.** The disease pressure was very high (LSI > 8) at Maruteru (8.3); high (LSI-6-8) at Pantnagar (7.7), Patambi (7.3), Ludhiana (7.2), Raipur (7.0), Titabar (6.5), New Delhi (6.1), Chiplima (6.1) and IIRR (6.0); moderate (LSI-3-6) at Navsari (5.9), Mashodha (5.9), Gangavathi (5.8), Nawagam (5.7), Cuttack (5.3), Coimbatore (5.2), Chatha (5.0), Varanasi (4.7), Aduthurai (4.5), Karjat (4.4), Sabour (4.1) and Moncompu (3.0) and very low (LSI-<3) at Patna (1.3) and Mandya (0.3).

For selection of the promising entries, data of those locations were considered where the disease pressure was moderate to very high. Accordingly, the data from Patna and Mandya were not considered for selection of promising entries in DSN. The promising entries with SI less than or equal to 5 and which exhibited a score of 5 at or more than 65% of the locations are presented in Table 6.5B. Some of the entries which performed better than the resistant check Improved Samba Mahsuri were VP-R40-SHB, MS-ISM-DIG-3, VP-R297-SHB, VP-R12-SHB, MS-ISM-DIG-1, VP-R260-SHB, RP-Bio Patho-3, MS-ISM-DIG-4, RP-Bio Patho-5, VP-R256-SHB, VP-R44-SHB, VP-R157-SHB, VP-R35-SHB, VP-R36-SHB, VP-D6-SHB, VP-R158-SHB, VP-R145-SHB, MTU 1217 and RP-Bio Patho-7.

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol. 2, Plant Pathology

	;	!q *(č- >)	75.0	70.0	63.2	65.0	65.0	70.0	65.0	65.0	55.0	57.9	2.99	63.2	55.0	5.0	68.4
sceptibility index (SI \le 5.5) with score \le 5 to BB at or more than 55% of the locations	:	I q *(ε->)	45.0	45.0	42.1	30.0	30.0	35.0	30.0	30.0	30.0	31.6	16.7	15.8	25.0	0.0	52.6
ne lo		SI	4.5	4.6	4.8	5.0	5.1	5.1	5.1	5.2	5.3	5.3	5.3	5.4	5.4	7.8	4.7
of th		VRV	1	5	7	2	2	2	5	7	3	3	5	2	3	7	7
5%		TTB	3	3	3	5	3	3	5	5	5	5	5	5	5	7	3
an 5		КРК	7	5	5	5	-	5	5	3	5	7	7	7	7	7	7
re th		BTP	5	5	6	5	7	5	7	7	6	7	5	7	7	7	7
m0		TNd	5	5	7	7	5	5	7	7	7	6	7	7	5	6	3
ıt or		Tan	<i>L</i>	6	7	6	6	6	5	5	5	7	5	5	7	7	7
BB a		NMC	5	7	5	7	5	7	7	5	5	S	3	ς.	7	6	8
5 to	6-	SAN	5	7	7	7	5	5	7	5	7	7	5	2	7	6	8
re <	.e (0-	MNC	0	0	3		7	3	7	7	0	0	0	0	S	2	v .
SCO	Locations/Score (0-9)	MSD	3	7	5	S	5	5	S	33	33	7	5	S	7	6	8
with	ions/	UTM	6	7	ı	7	6	6	6	6	6	ı	ı	ı	6	6	١.
5.5)	ocat	ГDИ	3	3	3	S	7	3	3	S	7	3	5	6	5	7	6
SI ≤	Ι	K1L	3	3	3	3	3	3	3	3	3	3	1	3	3	7	3
ex (ІІВВ	3	1	П	-	-	П	-	-	-	3	7	7	1	7	1
/ ind		CNA	7	7	7	3	6	6	6	7	7	7	7	7	7	6	3
oility		CLK	5	3	3	S	5	7	3	2	5	S	7	S	5	6	3
eptik		CBL	7	3	5	7	5	5	5	3	7	S	5	S	3	7	3
Susc		СНИ	3	3	3	3	0	3	3	3	3	3	6	S	5	6	3
0W		CHL	5	5	7	7	7	7	5	5	7	S	5	7	7	7	v
/ith		TQA	3	3	1	3	n	æ	1	6	7	6	3	3	3	6	6
entries w		IET No.	30603	30620	30605	30582	30577	30585	30593	30594	30578	30602	30615	30575	30610	TN1 (S Check)	RPBio 226 (R Check)
Table 6.4B: NHSN entries with low su		Br. No.	3206	3226	3208	3112	3106	3115	3124	3125	3107	3205	3220	3103	3214	TN1 (S	RPBio 226
Table6.		P. No.	9	26	8	62	73	82	91	92	74	5	20	70	14	100	110

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored <3 and <5)

Table 6.5A: Location severity index (LSI) and frequency distribution of bacterial blight scores of DSN, *Kharif* ' 2022

scores or DS	.,	<i>iiij</i> 20		Lo	cation/	Freque	ency of	score	s (0-9)			
Score	ADT	CHT	CHP	CBT	1	GNV	IIRR	KJT	LDN	MND	MTU	MSD
0	46	0	0	0	0	0	0	0	0	189	0	0
1	11	1	6	2	0	0	33	0	0	22	0	0
2	0	0	0	0	0	0	0	0	0	11	0	0
3	39	54	17	37	32	6	14	125	12	6	0	23
4	0	0	0	0	0	0	0	0	0	0	0	0
5	32	118	93	128	141	136	3	37	41	0	9	103
6	0	0	0	0	0	0	0	0	0	0	0	0
7	31	49	69	62	40	72	163	35	90	0	58	83
8	0	0	0	0	0	0	0	0	0	0	0	0
9	47	6	39	0	12	15	14	12	86	0	139	19
Total	206	228	224	229	225	229	227	209	229	228	206	228
LSI	4.5	5.0	6.1	5.2	5.3	5.8	6.0	4.4	7.2	0.3	8.3	5.9
Screening	A	A	A	A	A	A	A	A	A	N	A	A

(LSI-Location severity Index; N-Natural; A-Artificial)

(Conti.) Location severity index (LSI) and frequency distribution of bacterial blight scores of DSN, $\it Kharif'$ 2022

Saara			L	ocation	/Frequ	ency of	fscores	(0-9)			
Score	MNC	NVS	NWG	NDL	PNT	PTN	PTB	RPR	SBR	TTB	VRN
0	57	0	0	0	0	92	1	0	43	0	0
1	41	0	0	7	1	73	0	0	16	0	2
2	0	0	0	0	0	0	0	0	0	0	0
3	41	10	14	0	16	47	0	4	58	14	55
4	0	0	0	0	0	0	0	0	0	0	0
5	45	111	123	109	29	17	38	35	40	39	125
6	0	0	0	0	0	0	0	0	0	0	0
7	40	102	87	84	38	0	118	143	51	21	27
8	0	0	0	0	0	0	0	0	0	0	0
9	1	6	5	29	145	0	71	47	21	40	0
Total	225	229	229	229	229	229	228	229	229	114	209
LSI	3.0	5.9	5.7	6.1	7.7	1.3	7.3	7.0	4.1	6.5	4.7
Screening	A	A	A	A	A	A	A	A	A	A	A

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

Table 6.5B: DSN entries with low susceptibility index (SI \le 5) with score \le 5 to BB at or more than 65% of the locations

	*(&->)	78.9	76.5	85.0	100.0	88.9	75.0	71.4	72.2	81.0	80.0	75.0	75.0	70.0	78.9	68.4	68.4	78.9	75.0	73.7	25	50
	Iq *(ε->)	52.6	58.8	40.0	35.0	33.3	40.0	47.6	33.3	33.3	30.0	35.0	30.0	35.0	26.3	31.6	31.6	21.1	25.0	15.8	5	20
	SI	4.0	4.0	4.1	4.2	4.4	4.4	4.4	4.6	4.6	4.7	4.7	4.7	4.8	4.8	4.8	4.8	4.9	5.0	5.0	7.4	5.5
	VRN	1	3	3	3	3	5	3	5	5	5	3	7	3	-	3	-	5	5	-	5	3
	TTB	ı	6	-	1	3	ı	3	3	3	-	-	-	-	-	1	-	-	-	5	-	ı
	SBR	3	7	0	3	6	0	6	1	8	3	5	3	3	5	0	6	3	0	7	6	1
	RPR	3	3	5	5	5	5	2	2	5	5	5	3	7	7	7	7	5	5	5	6	7
	PTB	5	0	5	5	7	7	5	7	5	5	7	5	5	5	5	7	7	5	7	6	6
	PNT	5	3	5	S	3	3	3	3	5	3	5	5	6	6	6	1	5	6	5	6	6 8
	NDL	7	5	7	S	S	S	5	7	5	5	7	6	6	5	5	5	5	5	7	7	
	NWG	3	5	5	5	5	7	5	5	5	7	3	5	7	7	7	5	5	5	5	3	7 7 7 0 3 5
Locations/Score (0-9)	NVS	7	7	5	5	5	5	7	5	5	5	7	7	5	5	5	7	5	3	5	7	е,
ore	MNC	1	1	0	3	0	-	0	1	3	0	3	0	0	0	0	1	1	1	5	7	0
oS/su	MSD	3	3	3	5	3	3	3	7	7	7	3	5	5	5	7	6	5	5	7	7	7
atior	MTU	7	1	6	5	ı	5	7	•	7	7	7	7	7	6	1	5	7	6	1	6	7
Loc	LDN	5	5	3	3	5	7	6	3	5	5	7	5	5	5	7	3	5	7	3	6	
	KJT	7	3	3	3	5	3	3		3	7	3	3	5	3	3	3	3	3	5	S	w
1	IIRR	1	1	1	3	1	3	1	1	1	3	3	3	3	3	7	3	7	7	1	6	۲,
	GNV	S	7	5	5	5	6	5	5	5	5	5	5	5	5	5	5	7	5	5	6	e .
•	CTK	3	- 1	5	5	5	5	5	5	3	3	5	5	7	5	5	5	5	5	5	6	7
	CBT	3	3	7	5	5	7	7	7	7	3	5	5	5	5	5	5	5	5	7	S	v
	CHP	S	ı	5	S	ı	S	3	5	5	5	5	5	1	3	5	5	5	7	5	7	w
	CHT	3	3	5	S	5	3	3	5	7	5	5	7	3	5	3	7	3	5	5	S	
	ADT	0	1	0	0	1	0	0	'	3	5	0	0	1	0	3	0	-	3	1	6	۲,
	Designation	VP-R40-SHB	MS-ISM-DIG-3	VP-R297-SHB	VP-R12-SHB	MS-ISM-DIG-1	VP-R260-SHB	RP-Bio Patho-3	MS-ISM-DIG-4	RP-Bio Patho-5	VP-R256-SHB	VP-R44-SHB	VP-R157-SHB	VP-R35-SHB	VP-R36-SHB	VP-D6-SHB	VP-R158-SHB	VP-R145-SHB	MTU 1217	RP-Bio Patho-7	TN1 (S Check)	225 RPBio 226 (R Check) 7 7 5 5 7 3 7
	Path #	125	52	162	118	51	154	74	53	92	153	127	148	122	123	170	149	146	191	78	217	225

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

❖ TRIAL No.7: SCREENING FOR RICE TUNGRO VIRUS DISEASE (RTD)

> NSN-1

The national screening nursery 1 (NSN-1) trial consisting of 338 entries including checks was proposed and conducted at 2 locations *viz.*, Coimbatore and IIRR. At both the locations the nursery was evaluated by artificially with the aid of l insect vector (leafhopper) transmission in the glass house. The frequency distribution of disease scores and location severity indices are presented in Table.7.1A. The disease pressure was high at IIRR (LSI 6.3) and Coimbatore (LSI 6.1) The entries performed better than the resistant check Vikramarya and showed resistance reaction to rice tungro disease are IET 30020, IET 29411, IET 29410, IET 29256, IET 30201, IET 29947, IET 29744, IET 29807 and IET 30284 (Table 7.1B).

Table 7.1A: Location severity index (LSI) and frequency distribution of Rice tungro disease scores of NSN-1, *Kharif* 2022

Score	Location/Freque	ncy of scores (0-9)
Score	СВТ	IIRR
1	0	0
3	14	9
4	1	0
5	138	98
7	149	225
9	27	0
Total	329	332
LSI	6.1	6.3
Screening	A	A

(N- Natural; A- Artificial)

Table 7.1B: Promising entries with low susceptibility index (<=4.0) and high PI in NSN-1 to Rice tungro disease, *Kharif* 2022

P. No.	Br. No.	IET No.	Freq	ation/ uency es (0-9)	SI	Total	<=3*	PI (<- 3)**	*S=>	PI (<- 5)**
			CBT	IIRR						
8	4608	30020	5	3	4.0	2	1	50	2	100
31	4501	29411	5	3	4.0	2	1	50	2	100
40	4510	29410	5	3	4.0	2	1	50	2	100
47	4517	29436	3	5	4.0	2	1	50	2	100
72	4001	29256	5	3	4.0	2	1	50	2	100
131	5505	30201	3	5	4.0	2	1	50	2	100
148	3502	29947	3	5	4.0	2	1	50	2	100
194	4126	29744	3	5	4.0	2	1	50	2	100
215	3804	29807	3	5	4.0	2	1	50	2	100
324	3837	30284	3	5	4.0	2	1	50	2	100
329	Vikra	amarya	7	3	5.0	2	0	0	0	0
328	Т	N1	5	7	6.0	1	0	0	1	100
	LSI		6.1	6.3						

(SI- Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NSN-2

The National Screening Nursery 2 (NSN-2) trial consisting of 571 entries including checks was conducted only at IIRR and 15 lines did not germinate. The disease pressure recorded was high with LSI 6.1 (Table 7.2A)

Table 7.2A: Location severity index (LSI) and frequency distribution of Rice tungro disease scores of NSN-2, Kharif 2022

Caara	Location/Frequency of scores (0-9)
Score	IIRR
1	0
3	20
5	202
7	341
9	1
Total	564
LSI	6.1
Screening	A

Out of 564 lines tested, only tested 20 lines showed score 3 and 202 showed 5 score against RTD. Best performing lines are viz., IET Nos 30850, 30851, 30866, 31017, 31042, 31082, 30902, 30999, 30922, 31128, 30800, 30807, 30756, 30725, 30641 and 30685 (Table 7.2B).

Table 7.2B: NSN-2 entries with low susceptibility index (SI \leq 3) against rice tungro disease, *Kharif*, 2022.

P. No.	Br. No.	IET No.	RTD score at IIRR
20	4420	30850	3
21	4421	30851	3
37	4438	30866	3
82	5120	31017	3
111	5403	31042	3
160	5629	31082	3
175	4715	30902	3
306	5060	30999	3
198	4739	30922	3
323	6114	31128	3
374	4242	30800	3
381	4249	30807	3
474	3963	30756	3
439	3927	30725	3
502	3608	30641	3
548	3654	30685	3
Vikramarya			3
Nidhi			3
Screening			A

(A- Artificial)

> NSN-H

One hundred fourteen entries were screened against rice tungro disease at IIRR under moderate disease pressure with LSI 5.8 (Table 7.3A).

Table 7.3A: Location severity index (LSI) and frequency distribution of rice tungro disease scores of NSN-H, Kharif 2022

Score	Location/Frequency of scores (0-9)
	IIRR
1	0
3	11
5	47
7	55
Total	113
LSI	5.8
Screening	A

Out of which, only 8 lines (IET 30498, IET 30499, IET 30529, IET 30531, IET 30510, IET 30511, VL Dhan 65, Vivekdhan 86 and Shalimar Rice-3) shown to be resistant for RTD (Table 7.3B).

Table 7.3B: NSN-H entries with low susceptibility index (SI \leq 3) against rice tungro disease, *Kharif*, 2022

P.No	Ent. No.	IET No.	RTD score (0-9) at IIRR
49	2519	30498	3
50	2520	30499	3
66	2913	30529	3
68	2915	30531	3
75	2807	30510	3
76	2808	30511	3
7	2607	VL Dhan 65	3
35	2505	Vivekdhan 86	3
43	2513	Shalimar Rice-3	3
103	Vikramarya		3
104	Nidhi		3
	LSI		5.8

> NHSN

The National Hybrid Screening Nursery (NHSN) consisted of 112 entries including checks. The entries were tested at two centers viz., Coimbatore and IIRR. The frequency distribution of disease scores and LSI are presented in Table 7.4A. The disease pressure was high at CBT (LSI 6.2) and Moderate at IIRR (LSI 5.9).

Table 7.4A: Location severity index (LSI) and frequency distribution of Rice tungro disease scores of NHSN, Kharif 2022

Caava	Location/Frequency of s	cores (0-9)
Score	CBT	IIRR
1	0	0
3	6	5
4	1	0
5	45	50
7	47	57
9	13	0
Total	112	112
LSI	6.2	5.9
Screening	A	A

(A- Artificial)

For the selection of promising entries both the locations were taken into consideration. The best entries which showed overall SI< 5.0 are listed in Table 7.4B. The promising entries are 30606, 30562, 30566, 30601, 30603, 30611, 30613, 30614, 30619, 30621, 29758, 30555, 30565, 30574, 30588, 30593 and 30599.

Table 7.4B: Promising entries with low susceptibility index (<=5.0) and high PI in NHSN

to Rice tungro disease, Kharif 2022.

P. No.	Br. No.	IET No.		Frequency of s (0-9)	SI	Total	<=3*	PI (<-3)**	<= 2 *	PI (<-5)**
			CBT	IIRR		I	V	\ \	V	v v
9	3209	30606	3	5	4.0	2	1	50	2	100
53	3011	30562	3	5	4.0	2	1	50	2	100
59	3017	30566	3	5	4.0	2	1	50	2	100
3	3203	30601	5	5	5.0	2	0	0	2	100
6	3206	30603	5	5	5.0	2	0	0	2	100
15	3215	30611	5	5	5.0	2	0	0	2	100
17	3217	30613	5	5	5.0	2	0	0	2	100
19	3219	30614	5	5	5.0	2	0	0	2	100
25	3225	30619	5	5	5.0	2	0	0	2	100
27	3301	30621	5	5	5.0	2	0	0	2	100
42	3316	29758	5	5	5.0	2	0	0	2	100
45	3003	30555	5	5	5.0	2	0	0	2	100
58	3016	30565	5	5	5.0	2	0	0	2	100
69	3102	30574	5	5	5.0	2	0	0	2	100
86	3119	30588	5	5	5.0	2	0	0	2	100
91	3124	30593	5	5	5.0	2	0	0	2	100
98	3131	30599	5	5	5.0	2	0	0	2	100
101	Vikrama	arya	7	3	5.0	2	1	50	1	50
100	TN1	-	7	7	7.0	2	0	0	0	0
(GI G	LSI		6.2	5.9						

(SI- Susceptibility Index; *No. of locations where the entry has scored \leq 5 and \leq 3; **Promising index (PI) based on no. of locations where the entry had scored \leq 3 and \leq 5)

> DSN

Donor screening nursery (DSN) comprising of 229 entries including checks were tested at Coimbatore and IIRR. The frequency distribution of disease scores and LSI are presented in Table 7.5A. The disease pressure was high at IIRR (LSI 6.4) and moderate at Coimbatore (LSI 6.0).

Table 7.5A: Location severity index (LSI) and frequency distribution of Rice tungro disease scores of DSN, *Kharif* 2022

G	Location/Frequency of scores (0-9)					
Score	CBT	IIRR				
1	0	0				
3	10	8				
5	107	55				
7	94	162				
9	18	0				
Total	229	225				
LSI	6.0	6.4				
Screening	A	A				

The DSN entries that showed a moderate level of resistance to rice tungro disease are listed in Table 7.5B. The promising entries included are CB18532, IET19273, VP-R35-SHB, VP-D4-SHB, MTU 1297, CGR-18-65 and CGR-18-65.

Table 7.5B: Promising entries with low susceptibility index (<=4.0) and high PI in DSN to rice tungro disease, *Kharif* 2022

			Frequenc (0-9)		al	*	* *	*	* *
P. No.	Designation	СВТ	IIRR	IS	Total	<=3*	PI (<-3)**	*S=>	PI (<-5)
19	CB18532	5	3	4.0	2	1	50	2	100
47	19273	3	5	4.0	2	1	50	2	100
122	VP-R35-SHB	5	3	4.0	2	1	50	2	100
168	VP-D4-SHB	3	5	4.0	2	1	50	2	100
186	MTU 1297	5	3	4.0	2	1	50	2	100
213	CGR-18-65	3	5	4.0	2	1	50	2	100
219	Nidhi	5	3	4.0	2	1	50	2	100
218	Vikramarya	7	3	5.0	2	1	50	1	50
217	TN1	5	7	6.0	2	0	0	1	50
	LSI	6.1	6.4						

(SI- Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

***** GLUME DISCOLOURATION

Glume discolouration (GD) was observed at four locations *viz.*, Chatha, Lonavala, Navasari and Nawagam during *kharif* 2022. Screening was done under natural conditions at all the four locations.

> NSN 1

In NSN1, 338 entries including checks were screened against glume discolouration under natural conditions. Moderate disease pressure was observed at Navasari (LSI 5.5), Nawagam (LSI 5.3), Chatha (LSI 5.1) and Lonavala (LSI 4.2). The frequency distribution of glume discolouration scores are presented below along with location severity indices.

Location severity index(LSI) and frequency distribution of glume discoloration scores of NSN-1. *Kharif* 2022

Coore	Location/Frequency of scores (0-9)									
Score	CHT	LNV	NVS	NWG						
1	7	0	0	0						
2	0	2	0	0						
3	74	153	61	42						
5	144	153	124	206						
7	89	26	153	86						
9	8	1	0	2						
Total	322	335	338	336						
LSI	5.1	4.2	5.5	5.3						
Screening	N	N	N	N						

(LSI-Location severity Index; N-Natural; A-Artificial)

A few promising entries found in NSN 1 for glume discolouration are IET Nos. 30008, 29246, 29212, 29360, 29943, 29694 and 29749.

Promising entries with low susceptibility index (<=3.5) and high PI in NSN-1 to glume discoloration, *Kharif* 2022

	Kiton, Kita		Loca	tion/Fi scores	requen (0-9)	cy of		Tota	*	**	*	=5* PI 5)**
P.No.	Br. No.	IET No.	IET No. BY SY SI		l	<=3*	PI (<-3)**	<= ? :	PI (<-5)			
4	4604	30008	3	3	5	3	3.5	4	3	75	4	100
97	3708	29246	5	3	3	3	3.5	4	3	75	4	100
105	3716	29212	3	3	5	3	3.5	4	3	75	4	100
136	5202	29360	3	3	3	5	3.5	4	3	75	4	100
147	3501	29943	5	3	3	3	3.5	4	3	75	4	100
160	3515	29694	3	3	3	5	3.5	4	3	75	4	100
191	4123	29749	3	3	3	5	3.5	4	3	75	4	100
334	Swar	nadhan	3	3	5	3	3.5	4	3	75	4	100
328	Т	TN1	7	5	7	7	6.5	4	0	0	1	25
(07.0	LSI	127 21	5.1	4.2	5.5	5.3	1 2 4	den : :		(7.7)		

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NSN-2

The national screening nursery 2 (NSN-2) trial consisting of 571 entries including checks was conducted only at Chatha and Nawagam. The disease pressure recorded was high at Nawagam (LSI 5.7) and moderate at Chatha with LSI 5.0.

Location severity index (LSI) and frequency distribution of glume discoloration scores of NSN-2, *Kharif* 2022

Coore	Location/Frequency of sco	ores (0-9)
Score	СНТ	NWG
1	4	0
3	116	27
5	156	311
7	110	217
9	4	3
Total	390	558
LSI	5.0	5.7
Screening	N	N

(LSI-Location severity Index; N-Natural; A-Artificial)

Best performing lines against glume discolouration included IET nos 30878, 31031, 31032, 31035, 31038, 31079, 30907, 30920, 31110, 31121, 30792, 30712, 30857, 31067 and 31076.

Promising entries with low susceptibility index (<=3.0) and high PI in NSN-2 to glume discoloration, *Kharif* 2022

P.	Br.	IET	Location/I y of score (-	SI	Total	<=3*	PI	<=5*	PI
No.	No.	No.	CHT	NWG	31	Total	\-3	(<-3)**	\ - 3	(<-5)**
50	4451	30878	-	3	3.0	1	1	100	1	100
98	5136	31031	3	3	3.0	2	2	100	2	100
99	5137	31032	-	3	3.0	1	1	100	1	100
102	5140	31035	-	3	3.0	1	1	100	1	100
106	5144	31038	-	3	3.0	1	1	100	1	100
156	5625	31079	-	3	3.0	1	1	100	1	100
180	4721	30907	3	-	3.0	1	1	100	1	100
196	4737	30920	3	3	3.0	2	2	100	2	100
239	5917	31110	3	3	3.0	2	2	100	2	100
314	6105	31121	3	1	3.0	1	1	100	1	100
366	4233	30792	-	3	3.0	1	1	100	1	100
423	3911	30712	-	3	3.0	1	1	100	1	100
27	4427	30857	1	5	3.0	2	1	50	2	100
142	5611	31067	1	5	3.0	2	1	50	2	100
153	5622	31076	1	5	3.0	2	1	50	2	100
559	TN1		5	7	6.0	2	0	0	1	50
558	HR-12		7	7	7.0	2	0	0	0	0
_	LSI		5.0	5.7		_				

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NHSN

National Hybrid Screening Nursery (NHSN) consisted of 112 entries including checks were screened for glume discolouration reaction at 4 locations. The screening was done by natural conditions at Chatha, Lonavla, Navasari and Nawagam. The frequency distribution of disease scores and location severity indices are presented below. The disease pressure was moderate at all locations viz., Nawagam (LSI 5.5), Chatha (LSI 5.2), Navasari (LSI 5.1) and Lonavala (LSI 4.1).

Location severity index(LSI) and frequency distribution of glume discoloration scores of NHSN, Kharif 2022

Saara	Location/Frequency of scores (0-9)						
Score	CHT	LNV	NVS	NWG			
1	0	0	0	0			
3	20	62	23	5			
5	56	39	62	73			
7	26	11	25	33			
9	3	0	2	1			
Total	105	112	112	112			
LSI	5.2	4.1	5.1	5.5			
Screening	N	N	N	N			

(LSI-Location severity Index; N-Natural; A-Artificial)

Some of the promising entries selected from NHSN are IET Nos. 30615, 30558, 30624, 30563, 30565, 30580, 30585, 30587 and 30631.

Promising entries with low susceptibility index (<=4.0) and high PI in NHSN to glume discoloration, *Kharif* 2022

	Br.	IET	Locati		uency o -9)	f scores			*	* *(*	*(
P. No.	No.	No.	СНТ	LNV	NVS	NWG	SI	Total	<=3*	PI (<-3)*·	*5=>	PI (<-5)**
20	3220	30615	3	3	3	5	3.5	4	4	100	4	100
49	3007	30558	3	3	3	5	3.5	4	4	100	4	100
31	3305	30624	5	3	3	5	4.0	4	4	100	4	100
54	3012	30563	5	3	3	5	4.0	4	4	100	4	100
58	3016	30565	3	3	5	5	4.0	4	4	100	4	100
76	3109	30580	3	3	5	5	4.0	4	4	100	4	100
82	3115	30585	5	3	5	3	4.0	4	4	100	4	100
84	3117	30587	3	3	5	5	4.0	4	4	100	4	100
41	3315	30631	3	3	3	7	4.0	4	4	100	3	75
109	Ajaya		-	3	3	5	3.7	3	3	100	3	100
100	TN1		7	7	7	7	7.0	4	4	100	0	0
_	LSI	_	5.3	4.1	5.1	5.5						_

(SI-Susceptibility Index; **No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> DSN

Donor screening nursery (DSN) comprising of 229 entries including checks were tested against glume discolouration at 4 locations *viz.*, Chatha, Lonavala, Navasari and Nawagam. The frequency distribution of disease scores and LSI are presented below. The disease pressure was moderate at Nawagam (LSI 5.4), Chatha (5.2), Navasari (LSI 5.1) and Lonavala (LSI 4.3)

Location severity index(LSI) and frequency distribution of glume discoloration scores of DSN, *Kharif* 2022

Saara	I	Location/Frequency of scores (0-9)							
Score	CHT	LNV	NVS	NWG					
1	1	0	0	0					
3	53	104	55	22					
5	70	101	109	139					
7	66	15	65	67					
9	3	7	0	1					
Total	193	227	229	229					
LSI	5.2	4.3	5.1	5.4					
Screening method	N	N	N	N					

(LSI-Location severity Index; N-Natural; A-Artificial)

Some of the entries that are found to be promising are: Pusa 2070-10-2, CB16806, CB16807, MS-68-3, MS-68-3-7, KNM 12346 and ARC5791.

Promising donors with low susceptibility index (<=3.7) and high PI in DSN to glume discoloration, *Kharif* 2022

		Lo	ocation/ of scor					*	*	*	PI 5)**
P. No.	Designation	СНТ	LNV	NVS	NWG	SI	Total	<=3*	PI (<->)	*\$=>	PI (<-5)
199	Pusa 2070-10-2	3	3	3	3	3.0	4	4	100	4	100
24	CB16806	3	3	5	3	3.5	4	3	75	4	100
25	CB16807	3	3	5	3	3.5	4	3	75	4	100
56	MS-68-3	3	3	3	5	3.5	4	3	75	4	100
57	MS-68-3-7	-	5	3	3	3.7	3	2	67	3	100
98	KNM 12346	-	5	3	3	3.7	3	2	67	3	100
109	ARC5791	-	3	3	5	3.7	3	2	67	3	100
	LSI	5.2	4.3	5.1	5.4				·		

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> False smut

The NSN-1 entries were screened for false smut disease at Cuttack, Masodha and Patna under natural conditions. However, most of the entries recorded 0 and 1 and the LSI of the entries was very low (CTK- 0.42; Masodha – 0.37; Patna - 0.5). Hence these data were not considered for the selection of the entries. Similarly, NSN-2 entries were screened naturally at one location i.e. Patna and LSI was very low (0.87). NHSN entries naturally screened at Chatha, Cuttack, Ludhiana and Patna. The LSI of locations varied from 0.4 to 5.69; the details are presented below.

Location severity index(LSI) and frequency distribution of false smut scores of NHSN, *Kharif* 2022

Same Same]	Location/Freque	ncy of scores (0-	.9)
Score	CHT	CTK	LDN	PTN
0	0	69	0	71
1	1	9	5	27
2	0	0	0	0
3	31	5	12	10
4	0	0	0	0
5	49	2	31	4
6	0	0	0	0
7	23	0	28	0
8	0	0	0	0
9	0	0	10	0
Total	104	85	86	112
LSI	4.8	0.4	5.6	0.7
Screening	N	N	N	N

Among the four locations, LSI was 4.81 at Chatha and 5.6 at Ludhiana. The IET #30555, 30564, 30600, 30603, 30615, 30617, 30621, 30623, 30631, 30554 and 29686 are showed tolerance against false smut disease at these locations. However, the identified entries have to be confirmed for one more season because of variations in the flowering period.

Promising entries with low susceptibility index (<=3.0) and high PI in NHSN to false smut, *Kharif* 2022

			Location/Frequence	cy of scores (0-9)				*		*
P.No.	Br. No.	IET No.	СНТ	LDN	IS	Total	<=3*	PI (<-3)**	*5=>	PI (<-5)**
45	3003	30555	3	1	2.0	2	2	100	2	100
56	3014	30564	3	1	2.0	2	2	100	2	100
2	3202	30600	3	-	3.0	1	1	100	1	100
6	3206	30603	3	3	3.0	2	2	100	2	100
20	3220	30615	3	-	3.0	1	1	100	1	100
22	3222	30617	3	-	3.0	1	1	100	1	100

			Location/Frequence	cy of scores (0-9)				*		*
P.No.	Br. No.	IET No.	СНТ	LDN	IS	Total	<=3*	PI (<-3)**	*5=>	PI (<-5)**
27	3301	30621	3	-	3.0	1	1	100	1	100
29	3303	30623	3	-	3.0	1	1	100	1	100
41	3315	30631	3	3	3.0	2	2	100	2	100
43	3001	30554	3	-	3.0	1	1	100	1	100
44	3002	29686	5	1	3.0	2	1	50	2	100
100	TN	V1	7	7	7.0	2	0	0	0	0
	LSI		4.8	5.6						

The DSN entries were screened naturally at Cuttack and Patna and the respective LSI was 0.43 and 0.55 and hence these locations were not considered for the selection of the entries.

> MULTIPLE DISEASE RESISTANCE

In NSN-1, a total of 13 entries had shown resistant/moderately resistant reaction to two or three diseases. All the entries showed moderate or resistant reaction against any of two diseases except IET# 29411 (MR to LB, SHR & RTD), 30020 (MR to LB, SHR & RTD) 30233 (MR to LB, NB & BS) and 30037 (MR to LB, BB & Resistant to NB) which showed moderate reaction for three diseases. Other entries under NSN-1 which showed different reaction was listed below. Entries *viz.*, IET # 28128 (MR to LB & BS), 28959 (MR to LB & Resistant to NB), 29409 (MR to LB&SHR), 29446 (MR to LB&NB), 29549(MR to SHB &SHR), 29564 (MR to SHB&SHR), 29891(Resistant to NB &MR to SHB), 30022 (MR to LB&SHR) and 30207 (Resistant to NB & MR to SHB)

Multiple disease resistant lines in NSN-1, Kharif-2022

CI No	IET No.			Diseas	se susce _l	otible/resist	ance reaction	on
SI. INO.	IEI NO.	LB	NB	ShB	BS	BB	ShR	RTD
1	28128	4	-	-	4.5	-	-	-
2	28959	3.9	2.8	-	-	-	-	-
3	29409	4	-	-	-	-	3.7	-
4	29411	3.8	-	-	-	-	3.8	4
5	29446	4.1	3.2	-	-	-	-	-
6	29549	-	-	5	-	-	3.7	-
7	29564	-	1	5.1	-	-	3.3	-
8	29891	-	3	4.8	-	-	-	-
9	30020	3.9	-	-	-	-	3.5	4
10	30022	3.7	-	-	-	-	3.7	-
11	30037	4	2.7	-	-	4.3	-	-
12	30207	-	3	5.1	-	-	-	-
13	30233	4.1	3.5	-	4	-	-	-

(LB-Leaf Blast; NB-Neck blast; ShB-Sheath Blight; BS-Brown spot; BB- Bacterial blight; RTD - Rice tungro virus)

In NSN-2, a total of fourteen entries showed resistance or moderate resistance reaction to two or three diseases. The entry viz., IET # 30722 showed high resistance reaction to NB, MR to BS, SHR and 30772 resistance to NB and MR to BS, SHR, BB). IET # 30753 (Resistant to NB; MR to BS& BB), 30831 (Resistant to NB; MR to BS, BB) and 30881 (Resistant to NB & MR to SHB, BB) showed resistance to three diseases. Remaining entries showed resistance or MR to two diseases and that included IET# 30748, 30833, 31050 and 31051 (MR to LB & Resistant to NB); IET# 30752 and 30856 (Resistant to NB; MR to BS), IET# 31050 and 31051 (MR to LB; Reistant to NB); IET# 31076 and 31079 (MR to LB&BS); IET# 30844 (Resistant to NB & MR to SHB), 30861 (Resistant to NB & MR to SHR) and.

Multiple disease resistance in NSN-2, Kharif – 2022

CL No	IET No			Disease su	esistance reac	ction	
Sl. No.	IET No.	LB	NB	ShB	BS	BB	ShR
1	30748	4.3	2.3	-	-	-	-
2	30752	-	2.5	-	4.7	-	-
3	30753	-	2.5	-	4.8	4.6	-
4	30772	-	2.5	-	4.8	4.6	3.8
5	30831	-	2	-	4.8	4.4	-
6	30833	4.1	2.5	-	-	-	-
7	30844	-	2.5	4.9	-	-	-
8	30856	-	2.5	-	4.8	-	-
9	30861	-	2.5	-	-	-	3.8
10	30881	-	2.3	5	-	4.4	-
11	31050	4.4	2.5	-	-	-	-
12	31051	4.3	2.3	-	-	-	-
13	31076	4.4	-	-	4.8	-	-
14	31079	4.3	-	-	4.8	-	-

(LB-Leaf Blast; NB-Neck blast; ShB-Sheath Blight; BB- Bacterial Blight; BS-Brown spot)

In NSN-H, a total of fourteen entries showed moderate or resistant reaction to two or more than two diseases. Entry viz., IET# 30531 (Resistant to RTD & MR to LB, NB & SHB) showed resistant or moderate reistant reaction to four diseases and 30507 (Resistant to NB & MR to LB&BS) was showed resistant or moderate resistant reaction to three diseases. Remaining all entries viz., IET# 28887 (MR to SHB&BS), 29636 (MR to LB&NB), 29654 (MR to LB&SHB), 30499 (Resistant to RTD& MR to SHB), 30511(Resistant to NB&RTD), 30512 (Resistant to NB& MR to BS), 30514 (MR to LB&SHB), 30515 (Resistant to NB & MR to BS), 30526 (MR to SHB&BS), 30529 (Resistant to NB & RTD) and 30530 (Resistant to NB & MR to BS).

Multiple disease resistance in NSN-H, *Kharif* – 2022

Sl. No.	IET No.		Disease sus	ceptible/resist	ance reaction	1
		LB	NB	ShB	BS	RTD
1	28887	-	-	5	4.5	-
2	29636	4.6	3.5	-	-	-
3	29654	4.6	-	4.3	-	-
4	30499	-	-	4.3	-	3
5	30507	4.8	2	-	5.3	-
6	30511	-	3	-	-	3
7	30512	-	2	-	5.3	-
8	30514	4.7	-	5	-	-
9	30515	-	3	-	4.8	-
10	30525	-	3	-	5.3	-
11	30526	-	-	5	5.3	-
12	30529	-	3	-	-	3
13	30530	_	2.3	-	4.5	-
14	30531	4.7	3.5	5	-	3

(LB-Leaf Blast; NB-Neck blast; ShB-Sheath Blight; BS-Brown spot; RTD - Rice tungro virus)

In NHSN, a total of 20 entries found resistant or moderately resistant to two or more diseases. IET # 30603 (MR to SHB, SHR, RTD & BB) and 30620 (MR to NB, BS & BB) showed resistance to three diseases. Other entries for two diseases included IET# 29722 and 30569 (MR to LB &NB), 30562, 30566, 30613 and 30619 (MR to BS&RTD), 30577 and 30585 (MR to LN &SHR), 30601, 30606 and 30611 (MR to SHR&RTD), 29758 (MR to SHB&RTD), 30567 (MR to LB &BS), 30593 (MR to LB&RTD), 30602 (MR to SHB&SHR).

Multiple disease resistance in NHSN, Kharif – 2022

Sl. No.	IET No.		Di	sease susce	ptible/r	esistance	reaction	
51. 110.	IEI NO.	LB	NB	ShB	BS	BB	ShR	RTD
1	29722	4.3	3.5	ı	-	-	-	-
2	29758	1	-	5.6	-	-	-	5
3	30555	ı	3.3	ı	-	-	ı	5
4	30562	ı	-	ı	4.9	-	ı	4
5	30566	-	-	-	5	-	-	4
6	30567	4.2	-	-	5	-	-	-
7	30569	4.4	3.3	-	-	-	-	-
8	30577	4.1	-	-	-	-	4.3	-
9	30578	4.5	3.5	-	-	-	3.8	-
10	30585	4.2	-	-	-	-	4.4	-
11	30593	4.3	-	-	-	-		5
12	30601	-	-	-	-	-	4.2	5
13	30602	-	-	5.5	-	-	4.3	
14	30603	-	-	5.5	-	4.5	3.6	5
15	30606	-	-	-	-	-	4.2	4
16	30611	-	-	-	-	-	4.4	5
17	30613	-	-	-	5	-	-	5
18	30619	-	-	-	4.9	-	-	5
19	30620	-	3.5	-	4.8	4.6	-	-
20	30621	-	-	5.3	-	-	-	5

(LB-Leaf Blast; NB-Neck blast; ShB-Sheath Blight; BS-Brown spot; BB-Bacterial blight; RTD - Rice tungro virus)

In DSN, a total of 30 donors were found resistant or moderate reaction to two or more diseases. Five donors exhibited resistant or moderate reaction to three diseases and that includes 19273 (MR to SHB, SHR&RTD), CB MSP9 006 (MR to LB, BS&SHR), KNM 12346 (Resistant to NB and MR to SHB&BS), UB 1066 (MR to LB, SHB&SHR) and VP-R36-SHB (Resistant to NB and MR to SHB&SHR) and RP-Bio Patho-3 (R to NB, MR-LB, BB). Other donors showing resistant or moderate reaction to two diseases was listed below.

Multiple disease resistance in DSN Kharif – 2022

Sl. No.	IET No.		Dise	ease susce	ptible/r	esistano	ce reaction	1
51. 110.	1E1 10.	LB	NB	ShB	BS	BB	ShR	RTD
1	19082	ı	ı	4.6	-	-	4.3	-
2	19198	-	-	-	4.5	-	3.8	-
3	19273	-	-	5	-	-	4.2	4
4	ADT 54	-	2.2	-	4.3	-	-	-
5	AE 939	3.8	2.8	-	-	-	-	-
6	CB MSP9 003	3.9	-	-	4.4	-	-	-
7	CB MSP9 006	3.9	-	-	4.4	-	4.3	-
8	CB MSP9 007	3.8	-	-	4.2	-	-	-

Sl. No.	IET No.		Disc	ease susce	ptible/r	esistano	ce reaction	1
SI. NO.	IEI NO.	LB	NB	ShB	BS	BB	ShR	RTD
9	CB17135	-	-	4.9	4.5	-	-	-
10	CB18532	3.8	-	-	-	-	-	4
11	CB18536	4.1	-	-	-	-	4.4	-
12	CGR-19-68	3.8	-	-	-	-	4.4	-
13	CL-442	-	2.8	-	4.5	-	-	-
14	KNM 12346	-	3	5	4	-	-	-
15	MS-ISM-DIG-10	4	-	-	-	-	4.3	-
16	RNR 37909	3.6	2.8	-	-	-	-	-
17	RP-Bio Patho-3	4	2.2	-	-	4.4	-	-
18	RP-Bio Patho-4	3.7	-	-	4.5	-	-	-
19	RP-Bio Patho-5	-	3	4.9		-	-	-
20	Tetep	4.2	3	5.1	4.5	-	-	-
21	TN1	-	-	7.7	-	-	-	6
22	UB 1066	3.9	-	4.7	-	-	4.3	
23	VP-D4-SHB	-	-	-	-	-	4.3	4
24	VP-D9-SHB	-	2.8	4.7	-	-		-
25	VP-R111-SHB	4	-	-	-	-	4.3	-
26	VP-R243-SHB	-	2.7	-	4.5	-	-	-
27	VP-R262-SHB	-	2.5	4.8	-	-	-	-
28	VP-R294-SHB	-	2.8	4.7	-	-	-	-
29	VP-R297-SHB	-	-	4.7	4.4	-	-	-
30	VP-R36-SHB	-	3	4.4	-	-	4	-

(LB-Leaf Blast; NB-Neck blast; ShB-Sheath Blight; BS-Brown spot; BLB-Bacterial leaf blight; RTD – Rice tungro virus)

II. FIELD MONITORING OF VIRULENCE

TRIAL No.8: FIELD MONITORING OF VIRULENCE: Pyricularia oryzae

The experiment was conducted at 24 locations across India against *Pyricularia oryzae* during *Kharif* 2022. The aim of this experiment was to monitor virulence pattern in the population of rice blast pathogen. The nursery included 39 cultivars consisting of near isogenic lines, international differentials, donors and commercial cultivars possessing different genes for blast resistance. The reaction of 39 differentials at twenty-four locations during the crop season to monitor the blast reaction on different host genotypes and is presented in Table 8.1. The disease pressure was high at Cuttack (LSI 6.5) and Gudalur (LSI 6.3). It was moderate (LSI 5.8 to 5.1) Gagharghat, Lonavala, Navasari, Jagtial, Khudwani and Karjat. The low disease pressure was recorded (LSI 4.7 to 1.0) at Almora, Nawagam, New Delhi, Patna, Ponnampet, Jagdalpur, Gangavathi, Uppershillong, Mandya, Malan, Pattambi, Mugad, Maruteru, IIRR, Wangbal and Rajendranagar. The data from these locations are presented in Table 8.1 and Figure 8.1A. The disease reaction at Rajendranagar centre did not showed variation among the differentials, all the entries scored resistant reaction with score of 1; and hence data from this location not included in interpretation of virulence pattern of isolates.

Tetep, RP Bio Path-3, Tadukan and Raminad str-3, were resistant across the locations with SI 3.1, 3.3, 3.4 and 3.4 respectively. Tetep was highly resistant across 17 locations indicating its potentiality as the best donors for resistance against blast disease. Tetep was susceptible at Cuttack, Gagharghat; moderately susceptible New Delhi, Patna, Khudwani, Maruteru and Karjat. Differential line-RP Bio Patho 3 possessing *Pi*2, showed resistance reaction at 14 locations, susceptible reaction at 7 locations. Tadukan showed susceptible reaction at Gudalur and Gagharghat; moderate susceptible reaction at Cuttack, Jagtial, Khudwani, New Delhi, Patna and Gangavathi; while it exhibited resistance reaction at 13 locations. Raminad str-3 showed susceptible reaction at Karjat, Khudwani, Jagtial, Cuttack and Lonavala while it was susceptible only at Coimbatore and Cuttack during 2021. It was moderately susceptible at Lonavala, Gagharghat, Ponnampet and Navasari. RP Bio Patho-4 showed susceptible reaction at only Gudalur and Navasari; while it was moderately susceptible at Cuttack, Lonavala, Khudwani, Karjat, Nawagam, New Delhi, Patna and Mugad.

Zenith was highly susceptible at Gudalur and Karjat; while it showed moderate reaction at Cuttack, Gagharghat, Lonavala, Jagtial, Khudwani, Nawagam, Patna, and Ponnampet. The susceptible checks like HR-12 and Co-39 are showing susceptible reaction at most of the locations but HR-12 recorded resistant reaction at Mugad, Wangbal and Rajendranagar; where it may be due to low disease pressure; it was moderately resistant reaction at Lonavala and Karjat. Similarly, Co-39 also recorded moderate disease reaction at Karjat, Mugad and Maruteru. The resistant check Rasi was highly susceptible at Cuttack, Gagharghat, Navasari, Jarjat, Almora and Jagdalpur. IR 64 was showing susceptible reaction at Cuttack, Gagharghat and New Delhi.

The difference in disease reaction score of susceptible and resistant checks reveals that shift in the pathogen population. Cluster analysis of *Pyricularia oryzae* reaction on 36 different genotypes at 24 locations was done and is presented in Figure 8.1B. The reaction pattern of genotypes at all the locations was grouped into eight major groups at 30% dissimilarity coefficient. The reaction pattern at Cuttack, Gudalur, Lonovala, Ghaghraghat, Navasari and Karjat are distinct form the other isolates. The isolate from Jagityal and Khudhwani are grouped in same cluster. The other 16 isolates formed a major cluster showing same kind of virulence pattern.

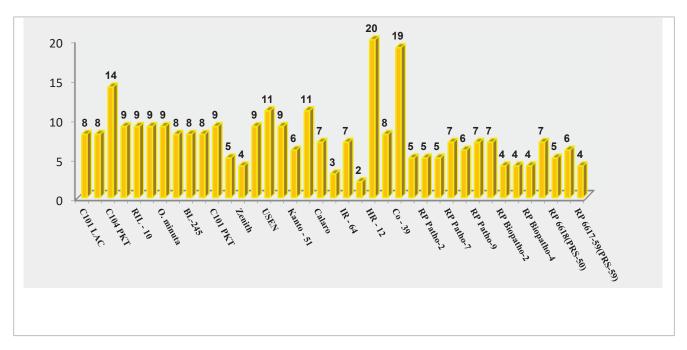


Figure 8.1A: Differential reaction of hosts to rice blast pathogen (*Pyricularia oryzae*) at different locations - *Kharif* 2022

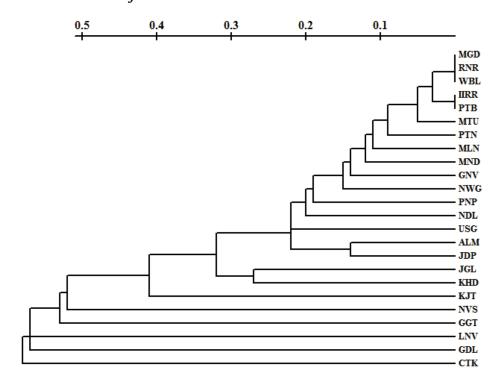


Figure 8.1B: Dendrogram showing relatedness of different reactions of *P. oryzae* at different locations during *Kharif* -2022

Table 8.1: Reaction of rice differentials to Pyricularia oryzae at across the locations in India during Kharif-2022

anoitoro I	Locations	_	AIM	ZLL	AND	LUU	CDI	прр	IND	151	TT Z	MILZI	INV	MIN						
ALM CIR	ALM CIR	CIR	4	200		1001	GDL	IIKK	JUL	JGF	ICA	OHN.	LINV	MILIN	SI	<=3*	*\$=>	Total	PI	PI 3
Genes/Screening N A A	V Z	A		A			Z	V	Z	V	Z	V	V	V)		v	
Tetep $Pi-kh+$ 2.5 7.0 2.0	2.5 7.0	7.0		2.0		7.0	4.0	1.0	0.0	3.0	4.5	4.0	3.0	2.0	3.1	15	22	24	92	3
3 <i>Pi2</i> 2.5 7.0	2.5 7.0	7.0		3.5		5.0	7.0	3.0	3.0	3.0	5.5	5.0	5.0	1.0	3.3	14	20	24	83	28
Pi-ta 3.0 5.0	3.0 5.0	5.0		5.5	_	7.0	0.9	1.0	1.5	5.0	4.0	5.0	4.5	1.0	3.4	13	21	24	88	54
-3 -	7.0	7.0		3.0	П	5.0	3.0	1.0	2.5	7.0	7.5	7.0	6.5	2.0	3.4	15	19	24	62	63
	2.0 5.0	5.0		3.((3.0	7.0	3.0	2.5	3.0	5.5	5.0	5.0	1.0	3.7	12	20	24	83	50
Pi-z + Pi-a + Pi-i 3.0 5.0	+ Pi-a + Pi-i 3.0 5.0	5.0		3.	3.5	5.0	0.9	4.0	0.5	5.0	7.0	5.0	5.5	2.0	3.8	6	20	24	83	38
o-2 <i>Pi2</i> 3.0 7.0	3.0 7.0	7.0		.,	3.0	0.9	2.0	2.0	2.5	5.0	4.0	5.0	0.9	2.0	3.8	11	19	24	62	46
	2.0 7.0	7.0			5.5	3.0	8.0	2.0	4.5	5.0	7.0	5.0	0.9	1.0	3.8	12	17	24	71	50
93.0 7.0	3.0 7.0	7.0			5.0	0.9	0.6	3.0	4.0	3.0	7.0	5.0	5.5	2.0	3.9	12	18	24	75	50
5.0 9.0	5.0 9.0	0.6			6.5	5.0	8.0	2.0	3.5	3.0	0.9	4.0	4.5	4.0	3.9	6	20	24	83	38
Pi54 5.0	5.0		7.0		0.9	5.0	8.0	2.0	3.5	3.0	5.5	4.0	6.5	3.5	3.9	10	19	24	62	42
Pi54 4.0 7.0	4.0 7.0	7.0			3.5	0.9	8.0	3.0	3.0	5.0	3.5	0.9	6.5	4.0	3.9	10	19	24	62	42
	4.0 7.0	7.0			3.5	5.0	8.0	3.0	3.5	5.0	5.0	5.0	4.5	2.0	4.0	6	20	24	83	38
Resistant 4.0 7.0	istant 4.0 7.0	7.0	_		4.0	7.0	0.9	3.0	3.0	0.9	3.5	3.0	0.9	1.0	4.0	6	17	24	71	38
Pi1 5.5	5.5		5.0		3.0	5.0	2.0	3.0	1.5	8.0	3.0	3.0	6.5	5.0	4.1	10	19	24	62	42
Pi2	2.5		0.6		3.0	7.0	7.0	3.0	3.0	5.0	5.0	5.0	6.5	2.0	4.1	11	18	24	75	46
4.0 7.0	4.0 7.0	7.0			4.0	0.9	5.0	3.0	3.0	0.9	3.5	0.9	5.5	2.0	4.3	8	17	24	71	33
1 $Pi-k$ 5.0 7.0	5.0 7.0	7.0			4.5	0.9	5.0	3.0	3.0	-	3.5	7.0	5.0	4.0	4.3	8	17	23	74	35
7.0 5.0	7.0 5.0	5.0	-		5.5	0.9	6.0	3.0	1.5	-	7.0	5.0	5.5	2.0	4.3	8	14	23	19	35
Dular $Pi-ka+$ 7.0 5.0	7.0		5.0		4.0	0.9	8.0	1.0	3.0	5.0	7.0	5.0	5.5	7.0	4.3	8	15	24	63	33
	5.0		5.0		3.0	7.0	4.0	3.0	0.9	7.0	4.5	0.9	4.5	1.0	4.3	7	17	24	71	29
<i>Pi-9</i> 6.0	0.9		5.0		5.5	0.9	7.0	3.0	2.5	,	3.5	5.0	5.5	4.0	4.3	7	14	23	19	30
ho-1 <i>Pi2</i> 5.0	5.0		5.0		3.5	7.0	4.0	3.0	7.5	5.0	0.9	0.9	5.5	1.5	4.4	7	17	24	71	29
<i>Pi-2</i> 6.0	0.9		7.0		3.5	7.0	8.0	3.0	5.0	3.0	0.9	5.0	5.5	4.0	4.4	7	16	24	29	59
AC Pi-1 6.0	0.9	\dashv	7.0	- 1	4.0	7.0	4.0	3.0	5.5	3.0	0.9	7.0	0.9	4.5	4.5	7	16	24	29	59
<i>Pi-ks</i> 8.0	8.0	-	5.0		5.5	3.0	4.0	3.0	0.9		3.5	8.0	6.5	2.0	4.5	9	15	22	89	27
Pi-I + Pi-2 5.0	- Pi-2 5.0	_	7.0		3.0	5.0	0.6	4.0	5.0		5.5	0.9	7.0	0.9	4.7	9	15	23	9	26
<i>Pi-4b</i> 6.0	0.9	\dashv	5.0		4.0	0.9	5.0	3.0	0.9	0.6	5.0	0.9	5.5	0.9	4.8	9	15	24	છ	25
T <i>Pi-3</i> 4.5	4.5	-	5.0		4.0	0.9	7.0	3.0	2.5	7.0	7.0	0.9	7.0	2.0	8.8	9	15	24	છ	25
- 10 <i>Pi-12</i> 8.0	8.0	+	7.0		4.0	0.9	0.9	3.0	8.5		4.5	0.9	5.0	6.5	8.8	9	13	22	29	27
Resistant 8.0	8.0	+	7.0		4.0	7.0	5.0	4.0	7.5		7.0	5.0	5.5	2.0	8.8	9	15	23	9	97
Pi-2 + Pi-4 3.0	+ Pi-4 3.0	-	7.0		4.0	0.9	8.0	5.0	3.5	0.6	5.5	0.9	6.5	4.0	4.8	9	16	24	29	25
RIL - 29 Pi-7 7.0 7.0	7.0	H	7.0		5.0	0.9	7.0	3.0	6.5	8.0	3.5	5.0	4.5	4.5	4.9	4	15	24	63	17
A 57 $Pi-I + Pi-2 + Pi-4$ 3.0 7.0	3.0		7.0		3.5	7.0	8.0	3.0	3.0	0.6	4.5	5.0	7.0	5.0	5.0	7	16	24	29	29
USEN $Pi-a+$ 8.0 7.0	8.0		7.0		3.5	0.9	8.0	4.0	0.6		3.0	5.0	4.5	7.0	5.3	S.	12	23	25	22
Shi-tia-tao Pi-ks 8.0 7.0	8.0		7.0		5.0	3.0	0.6	5.0	0.6	5.0	3.0	5.0	5.5	3.0	5.3	9	13	24	54	25
- 7.0	7.0		5.0	<u> </u>	4.0	7.0	0.9	5.0	6.5	7.0	5.5	8.0	5.5	5.5	5.4	3	10	24	42	13
Co - 39 Susceptible 7.0 9.0	7.0		0.6	\vdash	7.5	0.9	0.6	0.9	8.5	0.6	4.0	7.0	8.0	0.9	6.5	2	2	24	21	8
HR - 12 Susceptible 7.0 9.0	7.0	H	0.6	\vdash	8.0	7.0	0.9	0.6	8.5	8.0	5.5	0.6	5.5	7.0	8.9	3	4	24	17	13
	4.9	-	6.5		4.3	5.8	6.3	3.2	4.3	9.9	5.1	5.5	9.9	3.4						
-																				

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

(Conti..) Table 8.1: Reaction of rice differentials to Pyricularia oryzae at across the locations in India during Kharif-2022

2.55 1.0	\top	۶	-	PI 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	22 21	24 92	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5 1.0	+	24 88	8 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0 3.0		H	63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 4.0	12 20		20
Fight 5.0 2.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3.0 1.0			38
tent to the first tent tent to the first tent tent tent tent tent tent tent te	5.5 4.0			46
1.0 2.0 3.0 6.0 5.0 5.0 3.0 3.5 1.0 4.5 3.0 5.0 4.5 2.0 0.0 3.5 4.5 1.0 4.5 3.0 3.0 4.0 5.0 3.0 3.5 4.5 2.0 3.0 3.0 3.0 4.0 5.0 3.0 3.0 2.5 3.0 2.0 3.0 6.0 4.0 5.0 3.0 2.0 5.5 4.0 2.0 1.0 6.0 4.5 7.0 5.0 4.0 4.5 1.0 3.0 5.0 6.5 5.0 5.0 3.0 4.5 1.0 3.0 3.0 6.0 4.5 7.0 5.0 4.0 4.0 2.0 2.0 3.0 6.0 4.5 7.0 5.0 4.5 4.0 2.0 2.2 3.0 5.0 5.0 5.0 3.0 4.5 4.0 2.0 3.0 3.0 5.0 5.0 5.0 5.0 4.0 3.0 3.0 5.5 5.0 5.0 5.0 4.0 4.0 3.0 3.0 5.5 5.5 5.0 5.0 4.0 5.0 3.0 3.0 5.5 5.0 5.0 5.0 4.0 5.0 3.0 3.0 5.5 5.0 5.0 5.0 4.0 5.0 3.0 3.0 5.5 5.0 5.0 5.0 4.0 5.0 3.0 3.0 5.5 5.0 5.0 5.0 4.0 5.0 3.0 3.0 5.5 5.0 5.0 5.0 4.0 5.0 3.0 3.0 5.0 5.0 5.0 5.0 4.0 6.0 2.5 3.0 5.0 5.0 5.0 5.0 4.0 7.0 3.0 3.0 5.0 5.0 5.0 5.0 4.5 7.0 3.0 3.0 5.0 5.0 5.0 5.0 4.5 7.0 4.0 3.0 5.0 5.0 5.0 5.0 4.5 7.0 4.0 3.0 5.0 5.0 5.0 5.0 4.5 7.0 4.0 3.0 5.0 5.0 5.0 5.0 5.0 7.0 4.0 3.0 5.0 5.0 5.0 5.0 5.0 7.0 4.0 3.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 6.0 5.0 5.0 5.0 5.0 5.0 8.0 5.	1.0			20
1.0 4.5 3.0 5.0 4.5 2.0 0.0 3.5 4.5 4.5 2.0 3.0 3.0 2.5 4.5 2.0 3.0 3.0 2.5 3.0	1.0 1.0			20
tant 2.0 3.5 3.0 4.0 4.5 2.0 3.0 3.0 3.0 4.5 2.0 3.0 3.0 4.5 2.0 3.0 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 3.0 3.0 3.0 4.5 3.0	3.0 1.0		H	38
trant 4.0 2.0 3.0 3.5 4.5 2.0 5.0 3.0 4.5 4.5 2.0 5.0 3.0 4.5 4.5 2.0 3.0 4.5 4.5 4.0	3.5 3.0			42
istant 4.0 2.0 3.0 6.0 4.0 5.0 3.0 2.0 5.5 sitant 4.0 2.0 1.0 6.0 4.5 7.0 5.0 4.0 4.5 7.0 5.0 4.0 4.5 1.0 5.0 1.0 6.0 4.5 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1.5 2.0			42
istant 4.0 2.0 1.0 6.0 4.5 7.0 5.0 4.0 4.5 4.5 1.0 1.0 3.0 5.0 5.0 5.0 5.0 5.0 3.5 4.5 1.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 3.5 4.5 1.0 3.0 3.0 6.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 1.0 5.0 1.0 3.0 5.5 3.0 5.0 5.0 5.0 1.0 5.5 1.0 5.0 4.0 5.5 1.0 5.0 4.0 5.0 5.0 1.0 5.5 1.0 5.0 4.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.0 1.0 5.5 1.0 5.0 1.0 5.0 1.0 5.5 1.0 5.0 1.0	3.5 3.0			38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	\vdash	H	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.5 2.0	10 19		42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0 1.0	\vdash	H	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5	8 17		33
1.0 2.0 3.0 5.5 5.5 5.0 7.0 4.0 4.0 1.0 3.0 3.0 5.5 5.5 5.0 5.0 1.0 4.0 4.0 1.0 3.0 3.5 5.0 4.5 5.0 5.0 1.0 5.0 6.0 3.5 3.0 4.5 5.0 5.0 1.0 5.0 1.0 5.0 6.0 3.5 3.0 6.0 6.0 1.0 6.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 4	2.0 3.0			35
1.0 3.0 3.0 5.5 5.5 5.0 1.0 5.5 3.0 3.5 5.0 4.5 4.5 7.0 3.0 1.0 5.5 6.0 3.5 5.0 4.5 4.5 7.0 3.0 4.0 5.5 6.0 3.5 3.0 6.0 4.5 7.0 3.0 4.0 5.5 6.0 3.0 3.0 6.0 6.0 1.0 6.0 4.0 4.5 6.0 2.5 1.0 6.0 4.0 5.0 5.0 4.0 4.5 6.0 2.5 1.0 6.0 4.0 5.0 5.0 4.0 4.5 4.0 2.0 3.0 6.0 4.0 5.0 5.0 4.0 4.0 4.0 5.0 3.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 5.0 3.0 3.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5	7.5 2.0			35
3.0 3.5 5.0 4.5 4.5 7.0 3.0 4.0 5.5 6.0 3.5 3.0 6.0 6.0 1.0 6.0 4.0	3.5 1.0			33
6.0 3.5 3.0 6.0 6.0 1.0 6.0 4.0 4.5 4.0 4.5 4.0 3.0 3.0 3.0 5.0 4.5 2.0 5.0 4.0 5.5 4.0 5.5 4.0 5.0 4.0 5.5 4.0 5.0 4.0 5.0 4.0 5.0 5.0 4.0 5.0 4.0 5.0 5.0 4.0 5.0 4.0 5.0 5.0 4.0 5.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 4.0 4.5 4.5 4.5 4.5 4.0 4.0 3.0 5.0 5.0 5.0 5.0 4.0 4.5 4.0 4.0 3.0 5.0 5.0 5.0 5.0 4.0 4.5 5.0 5.0 3.0 4.0 4.5 5.0 5.0 3.0 4.0 4.5 5.0 5.0 3.0 4.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.0 1.0	7 17		59
4.0 3.0 3.0 5.0 4.5 2.0 5.0 4.0 5.5 6.0 2.5 1.0 6.0 4.0 5.0 5.0 4.0 4.0 5.0 2.0 3.0 6.5 5.0 5.0 5.0 4.0 4.0 4.0 - 3.0 6.0 6.5 5.0 5.0 4.0 4.0 4.0 5.0 3.0 6.0 6.5 5.0 4.0	3.0 3.0	7 14		30
6.0 2.5 1.0 6.0 4.0 5.0 5.0 2.0 4.0 4.0 5.0 5.0 2.0 4.0 4.0 5.0 5.0 2.0 3.0 6.5 5.0 5.0 3.0 4.0 4.0 4.0 4.0 5.0 3.0 6.5 5.0 5.0 5.0 4.0 4.0 4.0 5.0 3.0 5.0 5.0 4.0 4.5 4.5 4.5 4.5 4.5 4.0 4.0 3.0 5.0 5.0 4.0 4.5 4.5 4.5 7.0 5.0 4.0 4.5 4.5 7.0 5.0 4.0 4.5 5.0 3.0 4.0 4.5 5.0 3.0 4.0 4.5 5.0 3.0 4.0 4.5 5.0 3.0 5.0 4.0 4.5 5.0 3.0 5.0 5.0 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 2.0	7 17		29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0 1.0			29
4.0 - 3.0 6.0 6.5 5.0 5.0 4.5 4.5 4.0 5.0 3.0 5.5 6.0 4.0 5.0 4.5 4.5 4.0 4.0 5.0 3.0 4.5 7.0 5.0 2.0 4.5 1.0 3.5 5.0 7.0 4.5 7.0 5.0 3.0 4.5 7.0 - 3.0 7.0 4.5 7.0 5.0 4.0 4.5 5.0 3.0 1.0 7.5 6.5 5.0 5.0 4.0 4.5 6.0 4.5 3.0 3.0 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.	5.0	7 16		29
4.0 5.0 3.0 5.5 6.0 4.0 5.0 2.0 4.5 4.0 4.0 3.0 5.5 4.5 7.0 5.0 3.0 4.5 1.0 3.5 5.0 7.0 4.5 7.0 5.0 4.0 4.5 7.0 - 3.0 7.0 4.5 7.0 5.0 4.0 4.5 7.0 - 3.0 7.0 4.5 7.0 5.0 4.0 4.5 7.0 3.0 1.0 7.5 6.5 5.0 4.0 4.5 3.0 7.0 3.0 3.0 5.0 5.0 5.0 4.0 4.5 5.0 8.0 4.5 3.0 5.0 5.0 5.0 4.0 4.5 5.0 8.0 4.5 3.0 5.0 5.0 5.0 4.0 3.5 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0 <td>4.0 2.0</td> <td>6 15</td> <td></td> <td>27</td>	4.0 2.0	6 15		27
4.0 4.0 3.0 5.5 4.5 7.0 5.0 3.0 4.5 1.0 3.5 5.0 7.0 4.5 7.0 5.0 4.0 4.5 7.0 - 3.0 5.0 3.5 3.0 3.0 4.0 4.5 7.0 3.0 3.0 5.0 3.0 4.0 4.5 5.0 4.0 4.5 6.0 4.5 3.0 3.0 4.0 4.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 5.0 4.0 4.5 5.0	2.0			26
1.0 3.5 5.0 7.0 4.5 7.0 5.0 4.0 4.5 7.0 5.0 4.0 4.5 7.0 5.0 4.0 4.5 7.0 5.0 4.0 4.5 7.0 5.0 4.0 4.5 7.0 5.0 4.0 4.5 3.5 3.0 3.0 4.0 3.5 3.5 3.0 3.0 4.0 3.5 3.5 3.0 3.0 4.0 4.5 3.5 3.0 3.0 4.0 4.5 3.0 5.0 5.0 5.0 4.0 4.5 3.0 5.0 5.0 5.0 4.0 3.5 5.0 5.0 4.0 3.5 4.5 4.0 5.0 5.0 5.0 4.5 3.5 4.0 4.0 3.5 4.5 4.0 5.0 5.0 5.0 4.5 4.5 4.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3.0 3.0	6 15		25
7.0 - 3.0 5.0 3.5 3.0 3.0 4.0 3.5 3.5 5.0 5.0 4.0 3.5 5.0 5.0 3.0 4.0 4.5 5.0 5.0 5.0 4.0 4.5 5.0 5.0 5.0 4.0 4.5 5.0 5.0 5.0 4.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	9.0 2.0			25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9	6 13		27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0 3.0	6 15		26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0			25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.0 2.0	4 15		17
4.0 3.0 3.0 7.0 6.0 7.0 7.0 3.5 4.5 8.0 6.0 5.0 6.5 5.0 7.0 7.0 5.0 5.5 8.0 3.5 3.0 6.5 5.0 7.0 5.0 4.0 5.5 6.0 5.0 5.0 7.5 6.5 9.0 7.0 7.0 5.5	9.0 2.0			59
8.0 6.0 5.0 6.5 5.0 7.0 7.0 5.0 5.5 8.5 8.0 8.0 8.0 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 2.0			22
8.0 3.5 3.0 6.5 5.0 7.0 5.0 4.0 5.5 6.5 6.5 9.0 7.0 7.0 5.5 6.5 9.0 7.0 7.0 5.5 9.5 9.0 7.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.5 2.0	6 13		25
6.0 5.0 5.0 7.5 6.5 9.0 7.0 7.0 5.5	6.0 2.0			13
31 37 03 00 30 01 01 00	7.0 2.0			8
6.0 3.0 6.5 8.5 6.5 6.5	9.0 3.0		24 17	13
3.5 3.2 3.3 5.6 4.9 4.8 4.7 3.3 4.5	4.2			

TRIAL No.9: FIELD MONITORING OF VIRULENCE: X. oryzae pv. oryzae

Trial on monitoring virulence of bacterial blight (BB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) was proposed at 26 hot spot locations across India during Kharif season of 2022. However, data were received from 25 locations. The rice differentials used in this trial consisted of eleven near isogenic lines (IRBB lines) possessing different single BB resistance genes in the genetic background of rice cultivar IR 24. The virulence analyses and categorization of the isolates was done based on the reaction of *Xoo* isolates on differentials possessing single BB resistance genes (Table 9.1). Reactions of the Xoo isolates were also recorded on differentials possessing combinations of different BB resistance genes. Susceptible check variety, TN1 and resistant check variety Improved Samba Mahsuri was also included in the trial. The Xoo isolates collected from Maruteru, IIRR, Chinsurah, Chiplima, Raipur and Pattambi were categorized as highly virulent and produced LSI (location severity index) of more than 7. All these isolates produced a highly susceptible reaction on susceptible check TN1. These isolates produced susceptible reactions on 11-13 differentials out of 13 differentials. These isolates produced moderate to highly susceptible reactions on IRBB21 possessing BB resistance gene Xa21. The isolates from Maruteru, Chiplima, Raipur and Pattambi produced susceptible reaction on IRBB 13 possessing BB resistance gene, xa13. The isolate from Maruteru also produced highly susceptible reaction on Improved Samba Mahsuri which can be rechecked.

The isolates from New Delhi, Ludhiana, Sabour, Nawagam, Patna, Mashodha, Navsari, Titabar, Cuttack, Coimbatore, Gangavathi, Aduthurai, Chatha and Jagtiyal were categorized as moderately virulent and these isolates produced an LSI of 5-7. These isolates produced susceptible reactions on 3-11 differentials. Majority of these isolates (except isolates from Nawagam, Patna and Coimbatore) showed moderate to high level of resistance to IRBB13. Similarly, most of these isolates (except isolates from New Delhi, Titabar, Sabour, Ludhiana and Coimbatore) showed moderate to high level of resistance to IRBB21. The isolates from Pantnagar, Rajendranagar, Warangal, Karjat and Moncompu were categorized as less virulent as they produced an LSI of below 5. These isolates produced susceptible reactions on 0-7 differentials. The reactions of all these isolates to differentials possessing different combinations of BB resistance genes are presented in Table 9.2. The isolate from Maruteru showed highly susceptible reactions (BB score of 7-9) on all the differentials possessing various combinations of BB resistance genes including Improved Samba Mahsuri. These data can be rechecked. In general, most of the gene combinations except IRBB 51, IRBB 61 and IRBB 62 showed a broad spectrum resistance (Figure 9.1A). Cluster analysis of *Xoo* reaction on differentials possessing different single BB resistance genes at various locations was done and is presented in Figure 9.1B. The isolate from Maruteru formed a distinct cluster. Other highly virulent category isolates like IIRR, Chinsurah, Chiplima, Raipur and Pattambi grouped together or nearby. Low virulent isolate like Karjat, Moncompu, Rajendranagar and Warangal grouped together. Most of the isolates from moderately virulent category grouped together.

Table 9.1: Reaction of rice differentials possessing different single BB resistance genes to *Xanthomonas oryzae* pv. *oryzae* at different locations during *Kharif* 2022

Differentials	Carra as religions		Hig	hly vir	ulent				I	Moder	rately v	irulen	t	
Differentials	Gene combinations	MTU	IIRR	CHN	CHP	RPR	PTB	NDL	LDN	SBR	NWG	PTN	MSD	NVS
IRBB 1	Xa1	9	9	7	9	9	7	9	7	9	7	7	9	8
IRBB 3	Xa3	9	9	9	8	9	9	7	7	9	8	7	8	7
IRBB 4	Xa4	8	9	9	7	5	7	7	7	5	6	7	6	6
IRBB 5	xa5	8	9	7	8	9	7	7	7	5	7	5	7	7
IRBB 7	Xa7	9	9	8	8	7	7	7	7	7	8	7	6	8
IRBB 8	xa8	9	9	7	8	9	7	9	7	9	4	7	7	5
IRBB 10	Xa10	8	9	9	9	9	7	7	9	9	6	7	5	8
IRBB 11	Xa11	9	9	9	8	7	7	9	7	5	7	7	5	6
IRBB 13	xa13	9	5	5	7	7	6	5	3	5	7	7	5	4
IRBB 14	Xa14	9	9	9	9	7	8	1	7	5	6	7	6	5
IRBB 21	Xa21	9	7	9	7	9	6	7	7	7	4	3	4	5
ISM	xa5+xa13+Xa21	9	3	3	2	3	5	5	3	3	5	5	3	3
TN1		9	9	9	9	9	9	9	9	9	9	7	9	8
LSI		8.8	8.1	7.7	7.6	7.6	7.1	6.8	6.7	6.7	6.5	6.4	6.2	6.2
Min Score		8	3	3	2	3	5	1	3	3	4	3	3	3
Max Score		9	9	9	9	9	9	9	9	9	9	7	9	8
# of entries>5		13	11	11	12	11	12	10	11	7	10	10	8	8

(Conti.,) Reaction of rice differentials possessing different single BB resistance genes to

Xanthomonas oryzae pv. oryzae at different locations during Kharif 2022

5100				Moder	ately v	irulent				Lo	w virul	ent	
Differentials	Gene combinations	TTB	CTK	CBT	GNV	ADT	CHT	JGL	PNT	RNR	WGL	KJT	MNC
IRBB 1	Xa1	6	5	6	6	9	5	4	6	5	2	2	0
IRBB 3	Xa3	6	5	4	7	5	6	6	5	5	3	1	1
IRBB 4	Xa4	8	7	4	6	7	4	5	6	4	2	1	0
IRBB 5	xa5	5	5	5	4	5	5	7	1	4	1	8	2
IRBB 7	Xa7	7	7	7	5	7	6	6	5	4	4	3	1
IRBB 8	xa8	6	5	6	6	9	7	7	6	4	5	1	2
IRBB 10	Xa10	8	5	7	4	3	5	6	7	4	4	1	2
IRBB 11	Xa11	6	5	5	6	1	5	7	6	5	5	1	2
IRBB 13	xa13	5	3	6	5	3	4	5	7	5	4	1	2
IRBB 14	Xa14	7	5	4	6	3	5	3	1	4	3	1	0
IRBB 21	Xa21	6	5	6	2	3	5	2	1	5	4	3	0
ISM	xa5+xa13+Xa21	2	5	3	2	3	3	2	5	3	1	3	1
TN1		8	9	7	9	9	6	6	8	9	9	5	4
LSI		6.2	5.5	5.4	5.2	5.2	5.1	5.1	4.9	4.7	3.6	2.4	1.3
Min Score		2	3	3	2	1	3	2	1	3	1	1	0
Max Score		8	9	7	9	9	7	7	8	9	9	8	4
# of entries>5		10	3	7	7	5	4	7	7	1	1	1	0

Table 9.2: Reaction of rice differentials possessing different combinations of BB resistance genes to *Xanthomonas oryzae* pv. *oryzae* at different locations during *Kharif* 2022

Differential	Gene combinations						Lo	cation	18					
S			NW											
		MTU	G	RPR	PTB	RNR	MSD	CBT	SBR	NVS	CHP	NDL	TTB	CHT
IRBB 50	Xa4+xa5	9	6	7	6	5	5	4	7	6	7	5	4	5
IRBB 51	Xa4+xa13	9	3	5	7	4	5	5	7	5	5	5	4	5
IRBB 52	Xa4+Xa21	9	6	5	6	5	5	6	5	6	6	5	5	5
IRBB 53	xa5+xa13	7	6	5	5	5	5	4	5	4	6	5	6	3
IRBB 54	xa5+Xa21	8	5	7	5	4	5	5	5	6	6	7	4	3
IRBB 55	xa13+Xa21	7	6	5	5	5	5	4	5	3	5	5	3	5
IRBB 56	Xa4+xa5+xa13	9	6	7	6	5	5	4	5	5	4	5	4	5
IRBB 57	Xa4+xa5+Xa21	7	6	7	5	5	5	-	5	6	5	5	4	6
IRBB 58	Xa4+xa13+Xa21	9	6	5	5	5	4	6	3	5	3	5	3	4
IRBB 59	xa5+xa13+Xa21	8	5	3	4	5	5	-	3	4	4	1	4	4
IRBB 60	Xa4+xa5+xa13+Xa21	9	6	3	4	5	3	6	3	3	3	1	3	5
IRBB 61	Xa4 + xa5 + Xa7	9	4	5	5	5	5	4	7	5	6	5	6	3
IRBB 62	Xa4 + Xa7 + Xa21	9	7	9	5	5	5	5	5	6	4	7	5	4
IRBB 63	xa5 + Xa7 + xa13	9	7	5	5	5	5	4	7	3	5	5	5	3
IRBB 64	Xa4 + xa5 + Xa7 + Xa21	9	6	5	4	5	3	6	3	4	4	5	5	3
IRBB 65	Xa4 + Xa7 + xa13 + Xa21	8	5	5	3	4	5	4	1	3	2	1	5	5
IRBB 66	Xa4 + xa5 + Xa7 + xa13 + Xa21	9	3	3	3	5	3	3	1	3	1	1	4	6
ISM	xa5+xa13+Xa21	9	5	3	5	3	3	3	3	3	2	5	2	3
TN1		9	9	9	9	9	9	7	9	8	9	9	8	6
LSI		8.5	5.6	5.4	5.1	4.9	4.7	4.7	4.7	4.6	4.6	4.6	4.4	4.4
Min Score		7	3	3	3	3	3	3	1	3	1	1	2	3
Max Score		9	9	9	9	9	9	7	9	8	9	9	8	6
# of														
entries>5		19	12	6	5	1	1	5	5	6	6	3	3	3

Differentials	Gene combinations						Loca	tions					
		CHN	GNV	IIRR	LDN	CTK	PTN	JGL	ADT	KJT	PNT	WGL	MNC
IRBB 50	<i>Xa4+xa5</i>	7	5	7	7	5	2	4	3	1	5	4	0
IRBB 51	Xa4+xa13	5	5	3	3	3	2	5	3	3	1	2	0
IRBB 52	Xa4+Xa21	7	2	7	3	3	3	2	3	1	1	1	0
IRBB 53	xa5+xa13	5	2	3	3	3	3	3	3	1	1	1	1
IRBB 54	xa5+Xa21	5	3	3	3	3	4	2	0	4	1	1	0
IRBB 55	xa13+Xa21	3	6	1	3	3	3	2	1	3	0	1	0
IRBB 56	<i>Xa4+xa5+xa13</i>	3	5	1	3	3	4	5	0	1	1	1	2
IRBB 57	<i>Xa4+xa5+Xa21</i>	5	5	3	3	1	3	3	0	1	1	1	1
IRBB 58	Xa4+xa13+Xa21	1	2	1	1	3	3	4	1	3	1	1	2
IRBB 59	xa5+xa13+Xa21	3	2	1	3	1	3	4	5	3	0	1	1
IRBB 60	<i>Xa4+xa5+xa13+Xa21</i>	1	1	1	3	3	3	2	4	1	0	1	0
IRBB 61	Xa4 + xa5 + Xa7	7	5	9	5	5	3	4	-	7	1	2	1
IRBB 62	Xa4 + Xa7 + Xa21	7	5	7	3	3	3	3	1	1	1	1	1
IRBB 63	xa5 + Xa7 + xa13	3	4	3	3	3	3	2	5	1	5	1	1
IRBB 64	Xa4 + xa5 + Xa7 + Xa21	3	5	3	3	3	3	2	-	1	1	1	1
IRBB 65	Xa4 + Xa7 + xa13 + Xa21	3	4	1	3	3	3	2	1	1	6	1	0
IRBB 66	Xa4 + xa5 + Xa7 + xa13 + Xa21	3	2	1	3	3	2	2	1	1	0	1	1
ISM	xa5+xa13+Xa21	3	2	3	3	5	5	2	3	3	5	1	1
TN1		9	9	9	9	9	7	6	9	5	8	9	4
LSI		4.4	3.9	3.5	3.5	3.4	3.3	3.1	2.5	2.2	2.1	1.7	0.9
Min Score		1	1	1	1	1	2	2	0	1	0	1	0
Max Score		9	9	9	9	9	7	6	9	7	8	9	4
# of entries>5		5	2	5	2	1	1	1	1	1	2	1	0

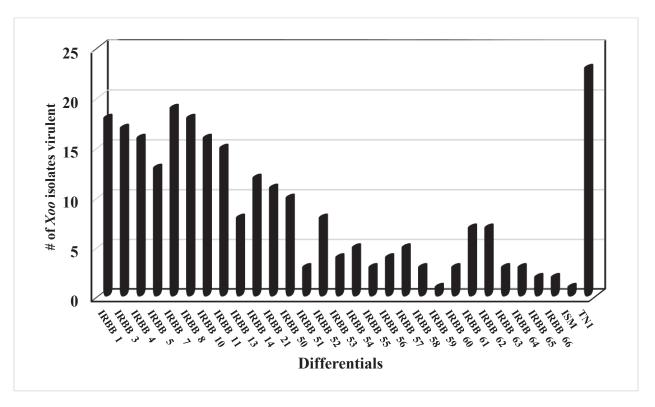


Figure 9.1A: Number of *Xoo* isolates showing moderate to high virulence on different BB resistance genes and their combinations during *Kharif* 2022

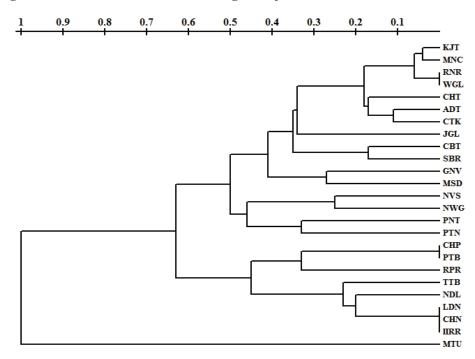


Figure 9.1B: Dendrogram (based on reactions of differentials possessing single BB resistance genes) showing the relatedness of different *Xanthomonas oryzae* pv. *oryzae* isolates from various locations during *Kharif* 2022

III. TRIAL No. 10. DISEASE OBSERVATION NURSERY - Kharif-2022

Disease observation nursery (DON) trials were conducted at several locations with different sowing dates viz., early, normal and late with relevance to the respective locations, with an aim to estimate the effect of such varied sowing/planting dates on the occurrence and severity of the disease in the respective endemic regions. It is generally known that the availability of susceptible host, virulent pathogen and prevalence of favorable weather conditions play important role in the process of disease development. In this context the trial was formulated with a susceptible variety (location specific) to take up sowing in three different dates to collect the information on the incidence of the disease and data was recorded as percent disease index of various rice diseases throughout the cropping period. Knowledge on the occurrence of particular disease in specific location based on susceptible host and time of sowing may help to formulate the best management strategy. The trial was proposed at 11 locations Bankura, Chinsurah, Kaul, Malan, Mandya, Maruteru, Moncompu, Nawagam, Nellore, Pusa and Raipur. The data however was received from 11 centres and Nellore center did not send the data. The center Gangavathi conducted this trial and sent the data. The salient features of this study are presented on location-wise below.

Bankura:

Three different sowing dates i.e, 15.06.2022 (early), 30.06.2022 (normal) and 15.07.2022 (late) were followed to study the effect of date of sowings on the progression of the leaf blast disease by using the susceptible varieties of this region *i.e.*, HR-12, TN-1, Swarna and Danargunri. The variety TN-1 showed tolerance to blast (15.51% PDI) as compared to the remaining varities HR-12 (19.22%), Swarna (42.31%) and Danargunri (93.03%) in this particular center (Table 10.1). The early sown crop showed more disease development and progression compared to the normal sown and late sown crops in all the four verities tested. Leaf blast was more in early sown crop of variety Danargurni (16.18%-93.03% PDI) followed by the early sown crop of Swarna variety (0-42.31% PDI). Lowest incidence of blast was observed in case of late sown crop of HR-12 (0-1.66% PDI) followed by the late sown crops of TN-1 (0-8.77% PDI), Swarna (0-12.12% PDI) and Danargurni (5.40-35.20% PDI). The table 10.1 showed that in Bankura center, early sown crop is very much prone to leaf blast incidence.

Table 10.1: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022 - Bankura

Location/				I	Percent Disease	Index			
Date of					Bankura				
sowing					Leaf blast				
V/DOS	DAT	(E)	(N)	(L)	V/DOS	DAT	(E)	(N)	(L)
HR-12	30 DAT	0.00	0.00	0.00	Swarna	30 DAT	0.00	0.00	0.00
E:15-06-2022	40 DAT	0.00	0.00	0.00	E:15-06-2022	40 DAT	6.56	2.17	2.10
N:30-06-2022	50 DAT	6.05	3.19	0.00	N:30-06-2022	50 DAT	16.14	7.61	7.37
L:15-07-2022	60 DAT	9.25	4.26	1.66	L:15-07-2022	60 DAT	18.29	12.00	12.12
	70 DAT	16.00	9.78			70 DAT	25.62	17.37	
	80 DAT	19.22				80 DAT	42.31		
	90 DAT					90 DAT			
	100 DAT					100 DAT			
	110 DAT					110 DAT			
TN-1	30 DAT	0.00	0.00	0.00	Danargunri	30 DAT	16.18	9.88	5.40
E:15-06-2022	40 DAT	0.00	0.00	0.00	E:15-06-2022	40 DAT	29.62	17.32	10.95
N:30-06-2022	50 DAT	0.45	0.00	0.00	N:30-06-2022	50 DAT	52.55	43.85	28.33

Location/				I	Percent Disease	Index									
Date of					Bankura										
sowing					Leaf blast										
V/DOS	DAT														
L:15-07-2022	60 DAT	5.98	8.79	8.77	L:15-07-2022	60 DAT	75.18	46.25	35.20						
	70 DAT	12.34	15.12			70 DAT	91.55	49.91							
	80 DAT	15.51				80 DAT	93.03								
	90 DAT					90 DAT									
	100 DAT					100 DAT									
	110 DAT					110 DAT									

Chinsurah:

In Chinsurah, three different sowing dates viz., 31.05.22, 16.06.22 and 14.07.22 were followed as early, normal and late sowing periods respectively. The variety MTU 7029 was used to study the disease progress of different diseases. The diseases that were prevalent in this centre were Sheath blight, Sheath rot, brown spot and bacterial leaf blight (BLB). The observations were taken at 10 days interval from 30 DAT to 110 DAT. Higher incidence of Sheath blight was observed in the early and normal sowing periods (11.0 to 69% PDI and 9.0 to 54 % PDI respectively) and significantly less incidence was observed during the late sown crop i.e., 2.0 to 23.5 % PDI. Sheath rot disease was present in the panicle initiation and grain filling stages in all the sowing periods (80 to 110 DAT) and relatively more in normal and late sown crops (11.0 to 42.5% and 16.5 to 50% PDI respectively), when compared to the early sown crop (5.0 to 25% PDI). Brown spot disease was generally less in all the sowings, was generally found to occur in the tillering to grain filling stages (70 to 100 DAT) and more in the late sown crop (5.5 to 23.5% PDI) when compared to early sown crop (3.5 to 16.5% PDI). Similarly, BLB severity more in normal sown crop (5.5% PDI) as compared to the early sown crop (5% PDI). In both the sowing times, there was no progression of the disease was observed in early stages of the crop. This may be due to the fact that the infected plants recovered with the age of the plants (30-80 DAT) and did not show further symptoms (Table 10.2).

Table 10.2: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022 - Chinsurah

Location/ Date of					Perce	entage (of Disea	ase Ind	ex				
sowing		Sh	eath bli	ight	S	Sheath	rot	В	rown s	pot		BLB	
V/DOS	DAT	(E)	E) (N) (L) (1		(E)	(N)	(L)	(E)	(N)	(L)	(E)	(N)	(L)
MTU-7029	30 DAT	11.0	9.0	2.0									
E:31-05-2022	40 DAT	15.0	13.5	5.5							2.5	3.5	-
N:16-06-2022	50 DAT	23.5	19.0	10.0							5.0	5.5	-
L:14-07-2022	60 DAT	41.0	29.0	14.5					4.0	5.5			
	70 DAT	56.0	38.0	19.0				3.5	6.5	11.0			
	80 DAT	63.0	47.5	23.5	5.0	11.0	16.5	5.5	9.0	18.0			
	90 DAT	69.0	54.0		10.0	16.5	30.0	11.0	13.5	23.5			
	100 DAT				15.0	42.5	50.0	16.5	16.0				
	110 DAT				25.0								

Gangavathi:

Four major diseases *viz.*, leaf blast, sheath blight, False smut and BLB were observed in all the sowing periods in Gangavathi during *kharif* 2022. Blast disease was present in very less percentage (2.5 to 10.5 % PDI) in all the stages of the crop (30 to 90 DAT). The severity of blast is more in early sown crop compared to normal and late sown crops in this area. The incidence of BLB was observed in all stages of the crop (30 to 90 DAT) and the incidence was very high in 50 to 80 DAT in all the sowing periods. The disease ranged between 4.0 to 15.6% PDI in early, 11.0 to 23.5% PDI in normal and 8.0 to 25.3% PDI in late sown crop (Table 10.3). In Gangavathi, the incidence of BLB was more in late sown crop. Sheath blight was observed from 50 DAT up to maturity stage and disease ranged between 2.5 to 19.6% PDI in early, 0.5 to 21.0% PDI in normal and 2.5 to 57.90% PDI in late sown crop. However, the incidence of False smut was observed in the grain filling to early maturity stage (70 to 90 DAT) and in highest incidence of 14.5 to 20.5 % PDI in the normal sown crops followed by early sown crop (8.0 to 19.0% PDI) and late sown crop (9.0 to 17.0% PDI).

Table 10.3: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022 – Gangavathi

anner ene ee			<u> </u>			<u> </u>							
Location/ Date of					Perc	entage	of Disea	ase Ind	ex				
sowing		Sh	eath bli	ight	F	alse sm	nut	L	eaf bla	st		BLB	
V/DOS	DAT	(E)	(E) (N) (L) ((E)	(N)	(L)	(E)	(N)	(L)	(E)	(N)	(L)
GNV-05-01	30 DAT	0.0	0.0	0.0	0.0	0.0	0.0	3.5	5.0	2.5	4.0	11.0	8.0
E:09-07-2022	40 DAT	0.0	0.0	0.0	0.0	0.0	0.0	4.0	5.0	5.5	11.0	14.0	11.5
N:18-07-2022	50 DAT	2.5	0.5	2.5	0.0	0.0	0.0	7.9	6.0	6.0	16.0	16.0	16.0
L:28-07-2022	60 DAT	6.3	6.3	12.3	0.0	0.0	0.0	9.1	3.8	6.5	18.0	18.5	16.5
	70 DAT	11.0	12.2	30.8	8.0	14.5	9.0	10.5	2.5	6.5	21.0	23.5	21.0
	80 DAT	13.6	17.0	48.0	13.0	18.0	14.5	-	4.2	8.0	14.5	18.0	24.0
	90 DAT	16.7	21.0	55.7	19.0	20.5	17.0	-	4.4	9.8	14.3	11.0	25.3
	100 DAT	19.6	21.0	57.9							15.6	12.3	23.8
	110 DAT	0.0	0.0	0.0								·	

Kaul:

Different varieties were tested for different sowing dates which was not as per the technical programme finalized during the workshop. All the three different cropping dates should have been planted for comparison, but has not been done in this case. Blast and Sheath blight severity data taken at one or two dates, it was not sufficient to compare the progression of disease over different sowing times and also with in the same sowing season from planting to harvesting. The very purpose of comparing the disease severity during the different sowing periods has not been served with the conduct of this experiment. The co-operator is requested to explain this deviation from the finalized protocol for the conduct of DON experiments (Table 10.4). Comparatively the foot rot or bakane disease was more in early sown crop compared to normal sown crop.

Table 10.4: Occurrence of different rice diseases in disease observation nursery at

different test locations, Kharif - 2022 - Kaul

Location/					Percentag	ge of Disease In	dex			
Date of sowing		Foo	t Rot	F	Blast		She blig		Brown sp	ot
V/DOS	DAT	(E)	(N)	(N)	(L)	V/DOS	(E)	(N)		(E)
VARIETY	30 DAT	9.0	4.7	9.9		VARIETY			CSR 30	
PB 1121	40 DAT	-	-	14.7		HKR 126			E:25-06-22	
E:11-06-22	50 DAT	10.0	6.3			E:11-06-22				
N:25-06-22	60 DAT	16.2	10.9			N:25-06-22				5.6
L:09-07-22	70 DAT	17.3	12.6							6.4
	80 DAT	15.6	11.4		18.0		13.4	8.8		7.5
	90 DAT	10.8	9.1				9.5	11.8		8.8
	100 DAT	8.5	7.4							
	110 DAT	6.8	5.5							
V/DOS	30 DAT	5.8	3.9	10.6		V/DOS				
CSR 30	40 DAT	-	-	17.3		HKR 127				
E:11-06-2022	50 DAT	7.3	5.5			E:11-06-22				
N:25-06-2022	60 DAT	11.4	8.2			N:25-06-22				
L:09-07-2022	70 DAT	13	9.6							
	80 DAT	12.4	9.2		21.3		19.9	6.6		
	90 DAT	10	7.3				13.5	11.3		
	100 DAT	6.2	5.7							
	110 DAT	4.8	4.6							

Nawagam:

Two varieties viz., Gurjari and P-203 were used as test varieties for the purpose of estimating the effects of sowing period viz., early (05.06.2022), normal (20.06.2022) and late (05.07.2022) on the occurrence of Sheath rot disease in Nawagam. In the case of variety Gurjari, it was observed that the incidence of the disease was relatively more in the late stages of the crop (60 to 100 DAT) in late sown crop (20.0 to 53.33% PDI) and normal (18.34 to 47.78% PDI) and comparatively low incidence was observed from 60 to 100 DAT in early sowing periods (21 to 43.89% PDI). Among the three sowing periods, the incidence of Sheath rot was found to be maximum in the late sown crop (53.33% PDI). The disease was significantly less in the variety P-203 compared to Gurjari, with the initial symptoms started to appear about 60 DAT in the early and normal sown crops, progressing gradually thereafter. But in case of late sown crop, symptoms appear at 50 DAT. Further, the percentage disease index was relatively less in the case of the variety P-203 (maximum of 47.22% PDI) when compared to the variety Gurjari (maximum of 53.33% PDI). (Table 10.5). The same trend was followed in the case of variety P-203 like the late sown crop was more effected by the sheath rot incidence compared to normal and early sown crops.

Malan:

Variety HPU 2216 was used as the susceptible variety against Leaf blast and the crop was sown in i.e., 21.05.2022 (early), 05.06.2022 (normal) and 20.06.2022 (late). The early sown crop was found to be disease free (0.0% PDI) when compared to the normal (4.55 to 21.45% PDI) and late sown crop (4.05 to 33.75% PDI). Excess moisture during the early stages

of the crops under the late sown conditions led to the more incidence of the disease, when compared to the relatively dry season during early sown conditions and as a result the initial stage of the crop was relatively dry and hence incidence was low (Table 10.5).

Table 10.5: Occurrence of different rice diseases in disease observation nursery at

different test locations, Kharif - 2022-Nawagam and Malan

Location/		<u>, </u>	,		ent Disease Inde	X			
Date of		Naw	vagam			Mala	ın		
sowing		Shea	ath rot			Blas	st		
V/DOS	DAT	(E)	(N)	(L)	V/DOS	DAT	(E)	(N)	(L)
Gurjari	30 DAT	0	0	0	HPU 2216	30 DAT	0	0	0
E:05-06-2022	40 DAT	0	0	0	E:21-05-2022	40 DAT	0	0	4.05
N:20-06-2022	50 DAT	21.00	18.34	20.00	N:05-06-2022	50 DAT	0	4.55	17.05
L:05-07-2022	60 DAT	28.00	28.00	22.00	L:20-06-2022	60 DAT	0	9.5	25.2
	70 DAT	33.57	31.43	29.00		70 DAT	0	21.45	33.75
	80 DAT	39.98	35.00	29.72		80 DAT			
	90 DAT 42.22 36.91		41.11		90 DAT				
	100 DAT	43.89	47.78	53.33		100 DAT			
	110 DAT	-	ı	ı		110 DAT			
P-203	30 DAT	0	0	0					
E:05-06-2022	40 DAT	0	0	0					
N:20-06-2022	50 DAT	0.00	0.00	5.00					
L:05-07-2022	60 DAT	16.67	10.00	11.77					
	70 DAT	20.48	15.00	20.00					
	80 DAT	21.34	23.34	28.34					
	90 DAT	24.00	29.00	39.14					
	100 DAT	27.00	33.89	45.56				·	
	110 DAT	35.72	41.67	47.22					

Mandya:

The progression of four diseases (blast, sheath blight, neck blast and brown spot) were studied at three different sowing dates i.e., 15-07-2022 (early), 11.08.2022 (normal) and 16.09.2023 (late) by using two different susceptible varieties like MTU-1001 and IR-64. MTU 1001showed better tolerance for blast disease and late sown crop effected much (17%PDI) compared to early (5.5%PDI) and normal sown crops (11%PDI). IR 64 showed better tolerance to sheath blight compared to MTU 1001. Among the different diseases studied, sheath blight was more severe in normal sown crop (61.5% PDI in both MTU 1001 and IR 64), Necjk blast was more severe in early sown crop (11 to 61.5% PDI in MTU 1001 and 9-65% PDI in IR 64) compared to normal and late sown crops. Incase of brown spot, the variety MTU 1001 showed more disease in late sown crop (1-66% PDI), but incase of IR 64, normal sown crop showed more disease severity (2-44% PDI). Blast disease was more in late sown crop (17% PDI) of MTU 1001 and less in early sown crop (5.5% PDI) (Table 10.6).

TABLE 10.6: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022-Mandya

Location/					P	ercent	age of	Disease	Severit	y			
Date of sowing	DAT		Blast			SHB		NEC	K BLA	AST	Bı	own sp	ot
V/DOS		(E)	(N)	(L)	(E)	(N)	(L)	(E)	(N)	(L)	(E)	(N)	(L)
MTU 1001	30 DAT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E:15-07-2022	40 DAT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
N:11-08-2022	50 DAT	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5
L:16-09-2022	60 DAT	2.5	1.0	1.5	3.0	4.0	0.0	0.0	0.0	5.5	0.0	0.0	13.0
	70 DAT	2.5	1.0	4.0	4.0	5.5	6.0	0.0	0.0	9.0	2.0	2.0	23.5
	80 DAT	2.5	4.5	6.0	4.5	27.0	6.0	11.0	4.0	10.0	3.0	10.0	24.0
	90 DAT	3.0	5.5	14.0	7.5	38.5	19.0	13.0	10.0	14.0	8.0	20.0	33.5
	100 DAT	5.5	10.0	13.0	45.0	60.0	22.0	57.5	15.0	14.0	21.0	36.5	57.5
	110 DAT	5.5	11.0	17.0	53.0	61.5	38.5	61.5	16.0	18.0	21.0	36.5	66.0
IR 64	30 DAT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E:15-07-2022	40 DAT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N:11-08-2022	50 DAT	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
L:16-09-2022	60 DAT	2.5	1.0	2.0	4.0	6.0	0.0	0.0	0.0	6.0	2.0	2.0	2.0
	70 DAT	3.0	1.5	4.5	4.5	9.0	4.0	0.0	0.0	10.0	2.5	3.0	4.0
	80 DAT	3.0	4.5	6.0	4.5	41.5	8.0	9.0	4.0	10.0	3.0	18.0	6.0
	90 DAT	4.5	6.0	6.5	4.5	56.0	16.0	20.0	15.5	10.0	19.0	23.0	12.0
	100 DAT	8.0	12.0	12.0	26.0	59.5	25.0	63.5	19.0	12.0	40.0	38.0	13.0
	110 DAT	10.0	13.0	12.0	32.5	61.5	24.5	65.0	25.0	17.0	42.5	44.0	21.0

Maruteru:

Two varieties viz., BPT5204 and Swarna (MTU 7029) were tested in Maruteru under three different sowing dates i.e, 03.06.2022 (early), 18.06.2022 (normal) and 05.07.2022 (late), for the variations in the percent disease incidence of the two major rice diseases of this region i.e., Sheath blight and BLB. The crop sown in the early season was having more disease severity (sheath blight) than the crops sown during the normal and late periods.

Among the two varieties tested, the variety BPT5204 was found to be more susceptible to BLB viz., BLB (67.35% PDI), when compared to the variety Swarna 61.56% PDI. Sheath blight severity was more in early sown crop (67.41 % in MTU 1001 & 64.45% PDI in BPT 5204) compared to normal and late sown crops. The bacterial leaf blight severity was more in late sown crop (61.56 PDI in MTU 1001 & 67.35% PDI in BPT 5204) compared to early and normal sown crops (Table 10.7).

Table 10.7: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022-Maruteru

Location/ Date of			I	Percentage of	f Disease Ind	ex	
sowing			Sheath bligh	nt		BLB	
V/DOS	DAT	(E)	(N)	(L)	(E)	(N)	(L)
	30 DAT	-	-	0	-	-	35.18
Swarna	40 DAT	-	-	0		2.775	-
E:03-06-2022	50 DAT	32.22	80.00	18.33	2.78	10.37	6.67
N:18-06-2022	60 DAT	88.34	-	0.00	9.00	-	0.00

Location/ Date of			I	Percentage of	f Disease Ind	ex	
sowing			Sheath bligh	nt		BLB	
L:05-07-2022	70 DAT	-	53.33	0.00	-	0.00	0.00
	80 DAT	64.44	40.56	7.41	5.56	0.00	0.00
	90 DAT	63.33	47.22	0.00	0.00	0.00	21.08
	100 DAT	59.45	51.85	-	2.78	13.34	-
	110 DAT	67.41	44.08	15.19	0.00	52.07	61.56
BPT 5204	30 DAT	-	-	0	-	-	25.55
E:03-06-2022	40 DAT	-	0		-	7.77	-
N:18-06-2022	50 DAT	0.00	7.22	0.00	12.95	34.89	14.94
L:05-07-2022	60 DAT	20.56		0.00	49.19	-	0.00
	70 DAT		31.11	0.00	-	0.00	0.00
	80 DAT	56.67	22.22	1.85	42.00	0.00	20.41
	90 DAT	57.22	2.78	0.00	22.94	0.00	52.74
	100 DAT	62.78	21.12	-	13.67	9.37	-
	110 DAT	64.45	44.45	2.60	24.71	46.96	67.35

Moncompu:

Four different varieties i.e., Uma, Shreyas, Prathyasa and Pournami were sown on different dates i.e, 06.06.2022 (early), 23.06.2022 (normal) and 11.07.2022 (late) for the studies on the effect of the different time of sowing on Sheath blight and BLB incidence on rice. The intensity of the disease was very less this year, may be because of the relatively dry weather conditions during the entire cropping seasons. Among the different sowing period, both Sheath blight and BLB was relatively high during the fag end of the crop in the late sown crop of prathyasa and pournami compared to early and normal sown crops. Sheath blight was more in the late sown crop of varieties Prathyasa and pournami (49.73 and 15.56 % PDI). In the varieties shreyas and uma, sheath blight severity was more in early sown crop (13.34% in Uma and 30.82% in Shreyas) compared to normal and late sown crops. The incidence of BLB was very less this year and early sown crop effected much compared to normal and late sown crops (Table 10.8).

Table 10.8: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022-Moncompu

Location/ Date of			Pe	rcentage of	Disease Inc	dex	
sowing		S	Sheath bligh	nt		BLB	
	DAT	(E)	(N)	(L)	(E)	(N)	(L)
Uma	30 DAT	0.00	0.00	0.00	0.00	0.00	0.00
E:06-06-2022	40 DAT	0.00	0.00	0.00	0.00	0.00	0.00
N:23-06-2022	50 DAT	0.00	0.00	0.00	0.00	0.00	0.00
L:11-07-2022	60 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	70 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	80 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	90 DAT	5.12	1.94	2.89	0.00	0.00	0.00
	100 DAT	9.14	3.94	7.59	1.56	1.27	0.00
	110 DAT	13.34	7.22	11.12	3.89	2.78	0.28
Shreyas	30 DAT	0.00	0.00	0.00	0.00	0.00	0.00
E:06-06-2022	40 DAT	0.00	0.00	0.00	0.00	0.00	0.00
N:23-06-2022	50 DAT	0.00	0.00	0.00	0.00	0.00	0.00

Location/ Date of			Per	rcentage of	Disease Inc	dex	
sowing		S	heath bligh	ıt		BLB	
L:11-07-2022	60 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	70 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	80 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	90 DAT	21.33	9.72	6.51	3.02	0.00	0.00
	100 DAT	25.99	18.32	14.24	5.84	3.86	0.78
	110 DAT	30.82	25.28	18.61	8.33	8.34	1.67
Prathyasa	30 DAT	0.00	0.00	0.00	0.00	0.00	0.00
E:06-06-2022	40 DAT	0.00	0.00	0.00	0.00	0.00	0.00
N:23-06-2022	50 DAT	0.00	0.00	0.00	0.00	0.00	0.00
L:11-07-2022	60 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	70 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	80 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	90 DAT	22.11	12.77	14.34	1.27	0.83	5.28
	100 DAT	26.91	27.07	33.21	2.56	3.99	10.78
	110 DAT	30.56	37.50	49.73	4.72	8.06	16.95
Pournami	30 DAT	0.00	0.00	0.00	0.00	0.00	0.00
E:06-06-2022	40 DAT	0.00	0.00	0.00	0.00	0.00	0.00
N:23-06-2022	50 DAT	0.00	0.00	0.00	0.00	0.00	0.00
L:11-07-2022	60 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	70 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	80 DAT	0.00	0.00	0.00	0.00	0.00	0.00
	90 DAT	0.00	1.94	6.79	1.62	0.00	0.00
	100 DAT	0.45	4.66	12.27	3.39	0.99	0.53
	110 DAT	1.39	6.67	15.56	5.00	2.22	1.11

Raipur:

Two varieties viz., Swarna and Rajeshwari were tested in Raipur under three different sowing dates i.e.,06-10-2022 (early), 07-05-2022 (normal) and 30-07-2022 (late), for the variation in the percent disease incidence of the three major rice diseases of this region i.e., Sheath blight, Blast and BLB. The variety Rajeshwari was more tolerant to sheath blight and blast compared to the variety Swarna. The variety Swarna was more tolerant to BLB compared to Rajeshwari. Sheath blight disease severity was more in early sown crop of both the varities (5-35% PDI in Swarna & 5-25% PDI in Rajeshwari) vompared to normal and late sown crops. Blast was more in early sown crop of Swarna (30% PDI) compared to normal and late sown crop. No incidence of blast was observed in the case of late sown crop of Rajeshwari. The BLB incidence was more in normal sown crop (30% PDI) of Swarna and early sown crop of Rajeshwari (45% PDI) (Table 10.9).

Table 10.9: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022-Raipur

Location/ Date of				-	Percentag	ge of Dise	ase Index	K		
sowing		SI	neath blig	ght		Blast			BLB	
V/DOS	DAT	(E)	(N)	(L)	(E)	(N)	(L)	(E)	(N)	(L)
Swarna	30 DAT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E:06-10-2022	40 DAT	0.00	0.00	0.00	5.00	0.00	0.00	0.00	0.00	0.00
N:07-05-2022	50 DAT	5.00	5.00	5.00	10.00	10.00	5.00	0.00	0.00	5.00

Location/ Date of]	Percentag	ge of Dise	ase Index	K		
sowing		SI	neath blig	ght		Blast			BLB	
L:30/07/2022	60 DAT	15.00	15.00	16.50	20.00	15.00	16.50	0.00	0.00	5.00
	70 DAT	25.00	15.00	16.50	25.00	15.00	16.50	5.00	10.00	15.00
	80 DAT	35.00	25.00	16.50	25.00	15.00	16.50	15.00	30.00	15.00
	90 DAT	35.00	25.00	16.50	30.00	15.00	16.50	15.00	30.00	15.00
	100 DAT	35.00	25.00	16.50	30.00	15.00	16.50	15.00	30.00	15.00
	110 DAT	35.00	25.00	16.50	30.00	15.00	16.50	15.00	30.00	15.00
Rajeshwari	30 DAT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E:06-10-2022	40 DAT	0.00	0.00	0.00	0.00	0.00	0.00	5.00	3.00	5.00
N:07-05-2022	50 DAT	5.00	0.00	0.00	0.00	0.00	0.00	15.00	10.00	15.00
L:30/07/2022	60 DAT	15.00	5.00	5.00	0.00	10.00	0.00	25.00	30.00	15.00
	70 DAT	25.00	15.00	5.00	5.00	10.00	0.00	35.00	30.00	25.00
	80 DAT	25.00	15.00	5.00	5.00	10.00	0.00	35.00	30.00	25.00
	90 DAT	25.00	15.00	5.00	5.00	10.00	0.00	45.00	30.00	25.00
	100 DAT	25.00	15.00	5.00	5.00	10.00	0.00	45.00	30.00	25.00
	110 DAT	25.00	15.00	5.00	5.00	10.00	0.00	45.00	30.00	25.00

Pusa:

Variety Sugandha was used as the susceptible variety against brown leaf spott and the crop was sown in i.e., 15.06.2022 (early), 30.06.2022 (normal) and 05.07.2022 (late). The incidence of brown leaf spot was started at 50 days after transplanting. The incidence of brown leaf spot was more in late sown crop (43% PDI) compared to normal (23% PDI) and late sown crops (26% PDI) (Table 10.10).

Table 10.10: Occurrence of different rice diseases in disease observation nursery at different test locations, *Kharif* – 2022-Pusa

	BROWN LEAF	SPOT		
Location/date of sowing	Per	rcentage of	Disease severity	
V/DOS	DAT	(E)	(N)	(L)
Sugandha	30 DAT	0.00	0.00	0.00
E:15-06-2022	40 DAT	0.00	0.00	5.00
N:30-06-2022	50 DAT	0.00	2.00	9.00
L:05-07-2022	60 DAT	1.50	4.50	17.00
	70 DAT	5.00	9.00	22.00
	80 DAT	10.00	14.00	29.00
	90 DAT	15.00	16.00	34.00
	100 DAT	21.00	19.00	39.00
	110 DAT	26.00	23.00	43.00

Influence of weather parameters and date of sowing on different diseases at different locations

To study the impact of weather parameters (temperature, relative humidity and rainfall) in the progress of the disease, the area under disease progress curve was measured and analysed. Accordingly, at Nawagam, the sheath rot disease data was analysed for two varieties

viz., Gurjari and P-203. The results indicating that sheath rot disease progression was more rapid in Gurjari compared to the P-203. With increasing rainfall the sheath rot disease was increased in the case of the variety Gurjari, but it was reverse with the variety P-203 in which the progression of disease was increased with the decreasing rainfall (Table 10.11).

Table 10.11: Disease Progression with respect to weather factors at Nawagam

			Nav	vagam		Sheath	Rot
Sowing time	Tempe	rature	Relative	Humidity	Dainfall (mm)	AUDP	C
	Max	Min	Max	Min	Rainfall (mm)	GURJARI	P-203
Early	33.31	22.08	84.36	65.21	1063.10	2087	1274
Normal	32.78	21.74	84.77	66.35	1055.10	1975	1321
Late	32.36	21.36	85.06	67.22	993.10	1952	1734

At Mandya centre the leaf blast, sheath blight, neck blast and brown spot diseases were analysed with the data obtained for two varieties viz., MTU1001 and IR64. The results indicated that the leaf blast disease was more rapidly progressing in MTU 1001 (480) when compared to IR 64 (385). However, sheath blight disease, brown spot and the neck blast disease was observed to progress during all the three different sowing dates. The progress of sheath blight disease was found to be more rapid in the variety IR64 (2027 maximum in normal sown conditions) when compared to the variety MTU1001 (1658 maximum under normal sown conditions), while it was reverse in the case of brown spot disease, the variety MTU 1001 had the maximum AUDPC of 1880 under late sown conditions when compared to 1060 in IR 64 under normal sown condition. It was also observed that the variety IR 64 has highest AUDPC of 1250 in early sown crop compared to the variety MTU 1001 of 1123 under the same condition. It was also observed that the sheath blight and neck blast disease was more favoured by rainfall, this may be due to the fact that rainfall would have helped the pathogen mycelia to spread more easily to the surrounding plants. But in case of blast and brown spot diseases, the AUDPC increased with the decreasing rainfall (Table 10.12).

Table 10.12: Disease Progression with respect to weather factors at Mandya

			Mandy	a					AU	DPC			
Sowing time	Tempe	rature	Rela Humi		Dain Eall		ast	SI	НВ	N	В	В	BS
time	Max	Min	Max	Min	Rain Fall	MTU 1001	IR 64						
Early	29.13	19.12	91.50	67.61	1080.80	188	260	905	597	1123	1250	445	877
Normal	29.24	18.87	91.91	66.66	716.30	275	315	1658	2027	370	510	868	1060
Late	29.12	18.45	93.23	67.11	432.80	480	385	723	652	615	565	1880	475

Moncompu:

The AUDPC of BLB was observed to differ among the four varieties tested at Moncompu centre. The AUDPC was highest (245) in the lowest rainfall season (late sown with lowest rainfall (1382 mm) in the variety Prathyasa, while the reverse trend is followed for the other varieties Pournami, Uma and Shreyas, where the AUPDC was sound to be directly proportional to the intensity of the rainfall. Among the different varieties, Prathyasa had the highest AUDPC for BLB (245) Sheath blight (724) (Table 10.13). The progression of sheath

blight was indirectly proportional to total rainfall received during the crop season. The reverse trend was observed in the case of variety Shreyas, where the sheath blight progress was directly proportional to the amount of rainfall received.

Table 10.13: Disease Progression with respect to weather factors at Moncompu

		N	Ioncon	npu					AUD	PC			
Sowing time	Temp	erature		ntive nidity	Rain Fall		SI	łВ			В	LB	
	Max	Min	Max	Min		V1	V2	V3	V4	V1	V2	V3	V4
Early	31.53	24.20	87.40	81.60	1909.40	209	627	643	11	35	130	62	75
Normal	31.49	24.20	87.61	81.79	1645.20	95	407	586	99	27	80	88	21
Late	31.57	24.25	87.63	81.83	1382.00	160	301	724	268	1.40	16	245	11

V1=Uma, V2= Shreyas, V3= Prathyasa, V4= Pournami

Raipur:

The AUDPC of three different diseases of two varieties (Swarna and Rajeshwari) were studied in relation to the weather factors. The variety Swarna was more susceptible to sheath blight (1675) and blast (1600) diseases compared to the variety Rajeshwari, but incase BLB, the variety Rajeshwari (2275) is more susceptible than Swarna (1150). For both diseases, the progression of the disease was directly proportional to the amount of the rainfall received (10.14).

Table 10.14: Disease Progression with respect to weather factors at Raipur

			Raipu	r	-			AU	DPC		
Sowing time	Tempe	erature		itive idity	Rain	SH	В	Bla	ast	BI	ЪВ
	max	min	max	min	Fall	V1	V2	V1	V2	V1	V2
Early	31.85	22.62	87.55	59.44	1077.80	1675	1325	1600	225	575	2275
Normal	31.04	21.98	89.15	60.82	1004.80	1225	725	925	550	1150	1780
Late	31.07	21.32	88.87	57.46	697.80	958	275	957	0	775	1475

V1=Swarna, V2=Rajeshwari

Gangavathi:

The AUDPC was in general very less in Gangavati for the diseases tested viz., blast (170) and false smut (318) except BLB (1522) and sheath blight (1783). While the diseases blast (448) sheath blight (1783) and BLB (1342) showed a clear trend of maximum AUDPC in minimum rainfall conditions. So the progression of the diseases indirectly proportional to the amount of the rainfall received (Table 10.15).

Table 10.15: Disease Progression with respect to weather factors at Gangavathi

Sowing	Tempe	erature		ative nidity	Rain Fall		AUI	OPC	
time	Max	Min	Max	Min		SHB	FS	LB	BLB
Early	30.70	21.16	97.75	55.67	457.50	599	400	350	1066
Normal	30.78	21.02	98.00	54.96	450.00	675	530	309	1181
Late	30.74	20.87	98.17	54.75	430.50	1783	405	448	1342

IV. DISEASE MANANGMENT TRIALS

TRIAL No.11: EVALUATION OF FUNGICIDES AGAINST LOCATION SPECIFIC DISEASES

The trial was formulated and conducted to identify the effective fungicidal molecule against blast and sheath blight from the commonly available commercial product and to select the single broad spectrum fungicide for managing more number of diseases. The trail was constituted with fungicidal molecules *viz.*, difenoconazole 25% EC (0.5ml), isoprothiolane 40% EC (1.5 ml), kasugamycin 3% SL (2.0 ml), kitazin 48% EC (1.0 ml), propineb 70% WP (3.0 g), tebuconazole 25.9% EC (1.5 ml) and thifluzamide 24% SC (0.8 g). This trial was conducted to confirm the results of the previous year's K-2020 and K-2021. The treatments were based on the commercial availability of fungicides in the rice growing areas, mode of action, spectrum and status of AICRIP testing in the preceding years. All the fungicides are recommended to manage the various rice diseases in India by Central Insecticide Board (CIB). These molecules comprise of different formulations such as suspension concentrates (SC), Slurry Liquid (SL), emulsifiable concentrates (EC) and wet-able powder. Trail was conducted in location specific diseases of all the agro-climatic zones. The trail was conducted during *Kharif*-2022 by using Randomised Block Design (RBD) as a statistical method with four or three replications in each centre.

The trial was proposed at 34 centres and conducted the experiment at 31 centres during Kharif-2022. The centres are Aduthurai, Bankura, Chatha, Chinsurah, Chiplima, Coimbatore, Cuttack, ICAR-IIRR, Faizabad (Masodha), Gangavati, Ghagraghat, Jagdalpur, Kaul, Lonavala, Ludhiana, Malan, Mandya, Maruteru, Moncompu, Navsari, Nawagam, Pantnagar, Pattambi, Ponnampet, Pusa, Raipur, Rajendranagar, Ranchi, Rewa, Sabour, Titabar and Varanasi across the rice growing regions in India. The experiment was conducted with locally popular disease susceptible rice varieties among the farmers. In general, sowings were taken up during June and July across the locations except in Mandya, Aduthurai, and Coimbatore during august, September and October, respectively. The details related to test variety used, date of sowing, date of transplanting, method of screening, date of initial symptoms observed, number of spray, spraying dates, disease observation and date of harvesting are mentioned in the Table 11.1. In general, fungicides were sprayed immediately after noticing the initial symptoms at all the locations either it's a natural disease incidence or artificial disease augmentation. Each fungicidal product was applied at the rate of two sprays with an interval of 10-15 days in most of the test centres except Ghagraghat, Jagdalpur, and Rewa where various number of sprays were given. The data from the centres were statistically transformed for their analysis and compilation. The fungicides were evaluated against leaf blast (ten locations), neck blast (nine locations), sheath blight (fourteen locations), brown spot (seven locations), sheath rot (six locations), grain discoloration (one location) and stem rot (one location).

ICAR-IIRR - AICRPR – Annual Progress Report 2022, Vol.2, Plant Pathology

Harvesting 06.02.2023 08.12.2022 15.11.2022 21.01.2023 11.11.2022 24.11.2022 25.11.2022 09.12.2022 17.11.2022 25.12.2022 14.11.2022 27.10.2022 27.10.2022 20.10.2022 10.11.2022 16.12.2022 21.12.2022 25.12.2022 03.01.2022 26.09.2022 11&26.10.2022 Observation 07.09.2022 14.09.2022 29.09.2022 08.01.2023 20.01.2023 29.10.2022 14.11.2022 14.11.2022 25.11.2022 10.09.2022 20.09.2022 30.09.2022 13.10.2022 07.11.2022 05.10.2022 13.10.2022 25.10.2022 15.09.2022 30.09.2022 15.10.2022 30.10.2022 16.10.2022 28.10.2022 8.01.2023 0.11.2022 30.10.2022 03.10.2022 28.10.2022, 09.11.2022 06.12.2022 05&26.2022 09.11.2022 27.09.2022 12&28.10.22 $\frac{05.10.2022}{15.10.2022}$ 15.09.2022 30.09.2022 01.09.2022 12.09.2022 08.09.2022 27.09.2022 22.12.2022 17.01.2023 07.09.2022 15.09.2022 14.10.2022 29.10.2022 24.10.2022 04.11.2022 27.09.2022 12.10.2022 03.09.2022 13.09.2022 16.09.2022 28.09.2022 30.09.2022 15.10.2022 06.10.2022 17.10.2022 31.10.2022 18.11.2022 03.01.2023 15.09.2022 30.09.2022 16.09.2022 28.09.2022 Spraying Table 11.1: Experimental details of fungicidal evaluation against location specific diseases of rice during, Kharif-2022 Date of activitie No of Spray 7 7 7 7 7 7 7 7 d 03.01.2023 24.09.2022 13.10.2022 Initial symptom 07.09.2022 24.09.2022 11.10.2022 03.09.2022 16.09.2022 27.09.2022 05.10.2022 20.08.2022 24.09.2022 05.09.2022 22.09.2022 28.10.2022 Inoculation 27.09.2022 03.10.2022 25.08.2022 12.09.2022 18.09.2022 24.08.2022 28.09.2022 31.08.2022 02.09.2022 ı Sowing/ Transplanting 15.06.2022 14.07.2022 10.06.2022 25.07.2022 27.09.2022/ 01.11.2022 06.072022/ 03.08.2022 25.06.2022 22.07.2022 14.10.2022 12.11.2022 16.06.2022 22.07.2022 02.07.2022 28.07.2022 12.06.2022 16.07.2022 20.06.2022 16.07.2022 25.06.2022 22.07.2022 13.07.2022 21.08.2022 26.06.2022 26.07.2022 25.06.2022 22.07.2022 03.06.2022 04.07.2022 15.06.2022 14.07.2022 20.06.2022 21.07.2022 11.08.2022 05.09.2022 16.07.2022 22.08.2022 Artificial Artificial Artificial Artificial Screening Natural Natural Natural Artificial Artificial Artificial Artificial Artificial Natural Natural Natural Natural Natural Natural Natural Swarna (MTU 7029) Swarna (MTU7029) Pusa Basmati Test Variety Basmati-370 GNV-1089 HPU 2216 Tapaswini BPT-5204 Jalpriya ADT-54 Swarna **CSR 30** HR-12 PR114 Swarna EK-70 EK-70 CO39 Jyothi Leaf & Neck blast/ Sheath blight/ Sheath rot Disease Recorded Leaf Blast & Neck Blast Sheath blight Sheath blight Sheath blight Sheath blight Sheath blight Sheath blight Brown spot; Sheath rot Sheath blight Sheath blight Brown spot Leaf blast; Neck blast Neck blast Neck blast Neck blast Leaf Blast Leaf blast Leaf blast Cuttack (ICAR-NRRI) Coimbatore Ghagraghat Faizabad (Masodha) ICAR-IIRR Chinsurah Gangavati Jagadalpuı Aduthurai Location Chiplima Lonavala Ludhiana Bankura Mandya Chatha Malan Kaul S. No 13 10 Ξ 12 15 16 17 4 9 _ ∞ 6 4

ICAR-IIRR - AICRPR - Annual Progress Report 2022, Vol.2, Plant Pathology

							Da	Date of activities	ies		
S. No	Location	Disease Recorded	Test Variety	Screening	Sowing/ Transplanting	Inoculation	Initial symptom	No of Spray	Spraying	Observation	Harvesting
18	Maruteru	Sheath blight/ Neck blast/ Sheath rot/ Brown spot	Swama (MTU 7029)	AI (SB)/ NI (Others)	17.06.2022 16.07.2022	22.08.2022	01.09.2022	2	12.09.2022 27.09.2022	14&27.09.2022 13.10.2022 17&18.11.2022	01.12.2022
19	Moncompu	Sheath blight and Grain discolouration	Uma	Natural	07.06.2022 25.06.2022	1	16.09.2022	1	17.09.2022	16.09.2022 15.10.2022	27.10.2022
20	Navasari	Sheath rot	GR-11	Natural	13.07.2022 07.08.2022	1	23.09.2022	2	07.10.2022 18.10.2022	13.10.2022 25.10.2022	25.11.2022
	Morrogan	Leaf blast	Gurjari	Artificial	20.07.2022 31.08.2022	06.10.2022	15.10.2022	2	15.10.2022 29.10.2022	15&29.10.2022 14.11.2022	09.12.2022
21	Inawagaiii	Sheath rot	Gurjari	Natural	20.07.2022 31.08.2022		14.10.2022	2	15.10.2022 29.10.2022	15&29.10.2022 14.11.2022	09.12.2022
22	Pantnagar	Sheath blight	Pant Dhan-4	Artificial	11.06.2022 06.07.2022	15.09.2022	21.09.2022	2	28.09.2022 14.10.2022	29.09.2022 09.10.2022	11.11.2022
23	Pattambi	Brown Spot	Uma	Natural	08.07.2022 02.08.2022	-	25.09.2022	2	28.09.2022 08.10.2022	27.09.2022 23.10.2022	07.11.2022
23	Ponnampet	Leaf blast Neck blast	Intan	Natural Natural	22.07.2022 02.09.2022	1 1	07.09.2022	2	15.09.2022	15.10.2022	24.01.2022
24	Pusa	Brown spot	Pankaj (HS)	Artificial	15.06.2022 11.07.2022	16.09.2022	02.09.2022	2	23.09.2022 07.10.2022		17.11.2022
25	Raipur	Sheath blight	Swama	Artificial	28.06.2022 08.09.2022	10.10.2022	1	2	10.10.2022 15.10.2022	13.10.2022 29.10.2022	29.11.2022
		Neck blast	Tellahamsa	Artificial	27.06.2022 23.07.2022	27.09.2022	22.09.2022	2		30.10.2022	
26	Rajendranagar	Sheath blight	Tellahamsa	Artificial	23.06.2022 17.07.2022	18.09.2022	18.09.2022	2	19.09.2022	27.09.2022 3&14.10.2022	19.11.2022
		Grain discolouration	Tellahamsa	Natural	23.06.2022 17.07.2022	1	1	2	04.10.2022	30.10.2022	
	Donohi	Leaf blast	Pusa sugandha-3	Artificial	15.07.2022 09.08.2022	17.09.2022	20.09.2022	2	21.09.2022 04.10.2022	15.10.2022	05.12.2022
27	Nation	Neck blast	Pusa sugandha-3	Artificial	15.07.2022 09.08.2022	17.09.2022	20.09.2022	2	21.09.2022 04.10.2022	25.11.2022	05.12.2022
28	Rewa	Leaf blast	PS4	Artificial	28.06.2022 28.07.2022	12.09.2022	24.09.2022	3	29.09.2022 03.10.2022	02.10.2022 20.10.2022	28.11.2022
29	Sabour	Brown spot	RajendraShweta	Natural	22.06.2022 29.07.2022	ı	30.08.2022	2	01.09.2022 15.09.2022	07.09.2022	21.11.2022
30	Titobor	Sheath rot	Gitesh	Artificial	15.07.2022 26.08.2022	27.10.2022	08.11.2022	2	10.11.2022 26.11.2022	15.12.2022	27.12.2022
00	1 1(40)41	stem rot	Basundhara	Artificial	15.07.2022 22.08.2022	04.10.2022	-	2	02.11.2022 18.11.2022	07.12.2022	27.12.2022
31	Varanasi	Brown spot	HUR4-3	Natural	24.06.2022 18.07.2022	1	03.09.2022	2	22.09.2022 07.10.2022	23.10.2022	14.11.2022

Leaf blast: The fungicides were evaluated against leaf blast disease at ten locations across the rice growing regions of the country. In most of the centres, two sprays of fungicides were applied uniformly except in Ghagraghat, Jagdalpur, and Rewa where three sprays were given. Disease severity was recorded at all the test locations. Besides, disease incidence was also observed at three locations *viz.*, Lonavala, Nawagam and Rewa. The test fungicidal products were evaluated against the disease under artificial inoculation at five locations including Ghagraghat, IIRR, Nawagam, Ranchi, and Rewa. Disease severity at test locations in check plots varied from 24.1% (Rewa) to 95.6% (ICAR-IIRR). The severity on the check plot was very high (>50%) at IIRR (95.6%), Jagadalpur (78.3%), Mandya (78.0%), Ponnampet (51.5%), Ghagraghat (70.8%); high (>30-50%) at Nawagam (45.1%), Ranchi (39.5%), Lonavala (35.5%), Coimbatore (34.4%); and moderate (20-29%) at Rewa (24.1%). Disease incidence at test locations in check plots was very high at Nawagam (93.6%), Lonavala (69.0%) and moderate at Rewa (23.5%).

All seven fungicidal treatments significantly reduced the disease severity and incidence at all test locations compared to the control. Test product Kitazin 48% EC (1ml/L) significantly reduced the leaf blast severity at two locations *viz.*, IIRR and Jagdalpur, and its mean disease severity was 26.6% from nine locations. Besides, tebuconazole 25.9% EC (1.5 ml/L) minimized the disease severity significantly at two locations (Ponnempet, Ranchi, and Mandya) and showed the mean disease severity of 25.2%. Isoprothiolane 40% EC (1.5 ml/L) also significantly reduced the disease severity at three locations such as Coimbatore (13.4%), Lonavala (17%) and Nawagam (21.3%) with mean disease severity of 32.3% and on par with best treatment at Mandya (13%) and Ponnempet (26.8%). Isoprothiolane 40% EC also reduced the incidence at Lonavala (29%) and Nawagam (63.4) with an average disease incidence of 46.6%. Thifluzamide 24% SC also reduced the disease severity at Ghagraghat (12.6%) and Rewa (11.9%) and disease incidence at Nawagam (61.5%). It has shown a mean severity of 31.2% and disease incidence of 52.3% (Table 11.2&11.3; Fig.11.1A).

The grain yield data were recorded at all nine test locations and observed that all treated plots were superior to the check plot (3227 Kg/ha). Treatment (T2) Isoprothiolane 40% EC was superior in reducing leaf blast and increasing the mean yield (4458 Kg/ha). This was followed by tebuconazole 25.9% EC (1.5 ml/L) and thifluzamide 24% EC (1ml/L) with 4524 Kg/ha and 4321 Kg/ha, respectively compared to the other treatments (Table 11.4).

Table 11.2: Evaluation of fungicides against leaf blast disease severity and of rice, Kharif, 2022

F	Noso/I				Le	Leaf blast disease Severity (%)	sease Sevi	erity (%)				
rearment	Dose/L	CBT	CGT	IIRR	JDP	TNA	MND	NWG	PNP	REW	RNC	Mean
T1- Difenoconazole 25% EC	0.5 ml	16.0 (23.6)	44.9 (42.1)	74.4 (59.6)	46.7 (43.1)	25.0 (30.0)	15.0 (22.8)	28.7 (32.4)	29.0 (32.6)	18.1 (4.3)	38.1 (38.1)	34.7
T2- Isoprothiolane 40% EC	1.5 ml	13.4 (21.5)	38.6 (38.4)	73.06 (58.7)	45.6 (42.5)	17.0 (24.4)	13.0 (21.1)	21.3 (27.5)	26.8	16.2 (4.0)	30.2	32.3
T3- Kasugamycin 3% SL	2.0 ml	20.1 (26.6)	28.9 (32.5)	68.61 (55.9)	31.1 (33.9)	33.0 (35.1)	24.0 (29.3)	33.9 (35.6)	31.8 (34.4)	17.8 (4.2)	12.5 (20.7)	31.2
T4- Kitazin 48% EC	1.0 ml	17.9	28.5 (32.2)	52.22 (46.3)	28.9 (32.5)	31.5 (34.1)	21.0 (27.3)	26.3 (30.9)	30.5 (33.5)	16.3 (4.0)	17.8 (25.0)	26.6
T5- Propineb 70% WP	3.0 g	19.0 (25.8)	31.6 (34.2)	68.61 (55.9)	45.0 (42.1)	34.0 (35.7)	23.0 (28.7)	28.9 (32.5)	34.9 (36.2)	15.8 (4.0)	25.2 (30.1)	33.6
T6- Tebuconazole 25.9% EC	1.5 ml	16.3 (23.8)	24.3 (29.5)	58.06 (49.6)	41.1 (39.9)	24.5 (29.7)	11.0 (19.4)	31.4 (34.1)	24.9 (29.9)	14.4 (3.8)	8.4 (16.8)	25.2
T7- Thifluzamide 24% SC	0.8 g	17.9 (25)	13.1 (21.2)	66.67 (54.7)	42.2 (40.5)	32.2 (34.6)	16.0 (23.6)	23.7 (29.1)	33.4 (35.3)	(3.5)	22.2 (28.1)	31.2
T8- Control	1	34.4 (35.9)	70.7 (57.3)	95.56 (77.8)	78.3 (62.3)	35.5 (36.6)	78.0 (62.0)	45.2 (42.2)	51.5 (45.9)	24.1 (4.9)	39.5 (38.9)	54.8
General Mean		19.4	35.1	57.3	44.9	29.1	25.1	29.9	32.9	16.8	24.2	
LSD @ 5% ($P=0.05$)		1.0	2.0	2.5	2.1	5.0	3.3	5.9	1.5	6.0	3.2	
C.V.		2.0	8.2	14.4	6.5	2.6	18.8	13.6	9.9	6.3	18.7	
Transformation		AT	AT	AT	AT	AT	AT	AT	AT	ST	AT	
Disease		Z	Z	А	Z	Z	Z	А	Z	А	А	
(DC Discoss Corromiter Discussed in the nonemath and in discote two neforms	11 110 2020	+hoose in direct	7	T V	Constant Constant	TO	Carrotte Doot	The state of the s	(1)			

(DS - Disease Severity; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST - Square Root transformation)

Table 11.3: Evaluation of fungicides against leaf blast disease incidence of rice, *Kharif*, 2022

Tuestment	Dose/L	Leaf	blast disease	Incidence (%)
Treatment	Dose/L	LNV	NWG	REW	Mean
T1- Difenoconazole 25% EC	0.5 ml	41.0 (39.8)	78.8 (62.6)	14.4 (3.8)	54.2
T2- Isoprothiolane 40% EC	1.5 ml	29 (32.6)	63.4 (52.8)	17.7 (4.2)	46.6
T3- Kasugamycin 3% SL	2.0 ml	58 (49.6)	83.7 (66.2)	16.4 (4.0)	58.7
T4- Kitazin 48% EC	1.0 ml	53.5 (47.0)	76.1 (60.8)	18.1 (4.3)	49.3
T5- Propineb 70% WP	3.0 g	60.0 (50.7)	73.3 (58.9)	17.3 (4.16)	56.1
T6- Tebuconazole 25.9% EC	1.5 ml	39.5 (38.9)	81.7 (64.6)	19.0 (4.36)	54.8
T7- Thifluzamide 24% SC	0.8 g	58.0 (49.6)	61.5 (51.6)	12.9 (3.6)	52.3
T8- Control	-	69.0 (56.2)	93.6 (75.3)	23.5 (4.8)	70.8
General Mean	1	41.0	76.5	17.5	
LSD @ 5% (P=0.05)		1.1	4.4	0.8	
C.V.		3.1	8.1	5.4	
Transformation		AT	AT	ST	
Disease	.1 1.	N	A	A	T. C

(DI – Disease Incidence; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST – Square Root transformation)

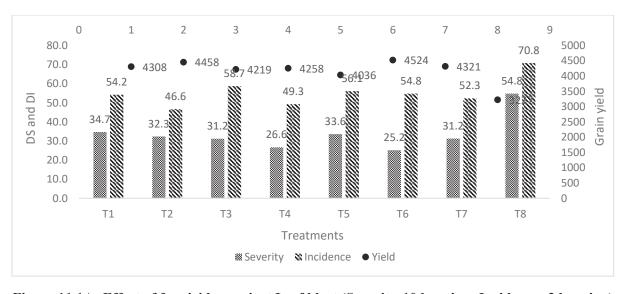


Figure 11.1A: Effect of fungicides against Leaf blast (Severity-10 location; Incidence -3 location) of rice, *Kharif*-2022

Table 11.4: Effect of fungicides on grain yield with respect to leaf blast of rice, Kharif, 2022

Tucchemont	1/0504				LEAFB	LAST GR	LEAF BLAST GRAIN YIELD (KG/HA)	D (KG/H	(A)		
ıreatinent	Dose/L	CBT	IIRR	JDP	TNV	MND	NWG	PNP	REW	RNC	Mean
T1- Difenoconazole 25% EC	0.5 ml	4755	4204	3380	3025	4591	6230	3544	4143	4902	4308
T2- Isoprothiolane 40% EC	1.5 ml	4771	4248	3518	3425	4530	6891	3591	4112	5039	4458
T3- Kasugamycin 3% SL	2.0 ml	4622	4046	4005	2825	3102	6156	3175	4152	2890	4219
T4- Kitazin 48% EC	1.0 ml	4631	4397	4253	2725	2617	6475	3303	4158	5761	4258
T5- Propineb 70% WP	3.0 g	4605	4278	3788	2500	2526	6378	5966	4158	5125	4036
T6- Tebuconazole 25.9% EC	1.5 ml	4692	4523	3973	2900	4773	6248	3812	3873	5924	4524
T7- Thifluzamide 24% SC	0.8 g	4649	3942	3820	2625	4321	9589	3089	4215	5374	4321
T8-Control	1	3732	3246	2950	2400	1141	4771	2417	3576	4808	3227
General Mean		4557	4110	3711	2803	3450	6250	3238	4048	5353	
LSD @ 5% (P=0.05)		44.0	6.98	73.2	123.8	95.9	635.6	167.9	72.3	372.2	
C.V.		1.4	1.3	2.8	6.2	3.9	14.4	7.3	2.2	8.6	
Disease		Z	A	Z	N	Z	A	Z	A	A	

Neck blast: The trail was conducted at ten locations to know the efficacy of the test product against neck blast. Disease pressure was created through artificial inoculation at Rajendranagar, and Ranchi, and the remaining six centers were through the natural incidence. Disease incidence was recorded at nine locations except for Ghagraghat where disease severity was recorded. Grain yield data were recorded at nine locations except for Ghagraghat. Two sprays of fungicidal treatments were given at all the centers except Ghagraghat and Jagadalpur where three sprays were given.

Disease severity and incidence were recorded and all the data were statistically transformed for analysis. The incidence on check plots was about 24.8% at Ranchi and 81% at Mandya. Disease incidence in control plot was very high (>50%) at Jagadalpur (67.6%), Mandya (81%), Ponnampet (55.2%), Kaul (50.6%), Malan (58.9%), and high (30-50%) at Lonavala (30.3%), Maruteru (30.9%), Rajendranagar (41.9%); and moderate (20-29%) at Ranchi (30.8%). The disease severity at Ghagraghat was about 48.6%.

The performance of all the seven fungicidal treatments was superior in reducing the neck blast incidence all the test locations compare to control (Mean DI: 49.3%). Formulation Isoprothiolane 40% EC (1.5 ml/L) significantly reduced the incidence of the neck blast at four locations *viz.*, Lonavala (6%), Kaul (15.2%), Maruteru (24.3%) and Rajendranagar (31.3%) and on par with the best treatments at Malan (26.6%) and Ponnampet (16.4%). In addition to this, low mean disease incidence (24%) was observed from the plots where isoprothiolane 40% EC (1.5 ml/L) is applied, followed by difenoconazole 25% EC (DI: 25.0%) and tebuconazole 25.9% EC (DI: 25%) (Fig.11.1B and Table 11.5). In respect to disease severity, Kitazin 48% EC (1.0 ml/L) treatment (T4) found significant at Ghagraghat (14.4%). The mean yield across the locations in check plot was 3127 Kg/ha. Among the seven fungicidal treatments, tebuconazole 25.9% EC sprayed plots gave highest mean yield of 4342 Kg/ha was followed by Isoprothiolane 40% EC (4113 Kg/ha) compared to other treatments (Table 11.6).

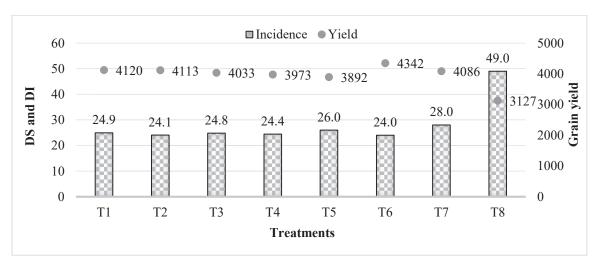


Figure 11.1B: Effect of fungicides against neck blast (Severity-1 location; Incidence-9 location) of rice

Table 11.5: Evaluation of fungicides against neck blast disease incidence and severity of rice, Kharif, 2022

	Dogo/	NB-DS (%)				Neck bl	ast diseas	Neck blast disease Incidence (%)	e (%)			
Treatment	Dose/ L	CCT	$_{ m JDP}$	KAU	ANT	MLN	MND	MTU	PNP	RNC	RNR	Mean
T1- Difenoconazole 25% EC	0.5 ml	27.1 (31.4)	46.65 (43.08)	18.95 (25.8)	17.50 (4.18)	26.3 (30.9)	21 (27.27)	23.09 (28.41)	17.95 (25.07)	18.3 (4.28)	32.4 (34.7)	24.7
T2- Isoprothiolane 40% EC	1.5 ml	24.9 (29.9)	45.16 (42.22)	15.2 (22.9)	6 (2.45)	26.6 (31.0)	33 (35.06)	24.28 (29.17)	16.35 (23.85)	18 (4.24)	31.3 (34.0)	24.0
T3- Kasugamycin 3% SL	2.0 ml	21.2 (27.4)	25.21 (30.14)	24.75 (26.90)	28.5 (5.34)	27.6 (31.7)	25 (30)	24.93 (29.89)	22.37 (28.23)	7.8 (2.79)	40.67 (39.6)	25.2
T4- Kitazin 48% EC	1.0 ml	14.4 (22.3)	23.81 (29.21)	26.9 (31.2)	23 (4.80)	30.3 (33.4)	31 (33.83)	30.78 (33.40)	19.4 (26.13)	8.8 (2.97)	36.0	25.6
T5- Propineb 70% WP	3.0 g	18.0 (25.1)	44.67 (41.94)	17.74 (24.9)	19 (4.36)	34.9 (36.2)	24 (29.33)	26.85 (31.09)	21.87 (27.89)	14.3 (3.78)	38.6 (38.4)	26.9
T6- Tebuconazole 25.9% EC	1.5 ml	14.8 (22.7)	41.43 (40.06)	36.1 (36.9)	16 (4)	31.1 (33.9)	20 (26.57)	26.54 (30.67)	14.3 (22.22)	5.5 (2.35)	34.15 (35.8)	25.0
T7- Thifluzamide 24% SC	0.8 g	13.4 (21.4)	42.50 (40.69)	38.3 (38.2)	29 (5.39)	31.9 (34.4)	19 (25.84)	29.77 (32.97)	25.23 (30.15)	12.3 (3.51)	39 (38.6)	29.7
T8- Control	1	48.6 (44.1)	67.66 (55.34)	50.6 (45.3)	30.25 (5.50)	58.9 (50.1)	81 (64.16)	30.92 (33.77)	55.2 (47.98)	24.8 (4.98)	41.9 (40.4)	49.0
General Mean		22.8	42.1	28.6	21.2	33.5	31.8	27.1	24.1	13.7	36.8	
LSD (a) 5% ($P=0.05$)	5)	0.3	1.4	2.2	0.9	1.9	4.1	3.5	2.4	2.7	2.9	
C.V.		1.7	4.6	11.0	6.3	6.9	18.3	18.2	14.3	27.9	11.0	
Transformation		AT	AT	AT	ST	AT	AT	AT	AT	ST	AT	
Disease		N	N	N	N	Z	Z	Z	N	А	А	
		at the second is a second in	-	L				۲	, t	.,,		

(DS – Disease Severity, DI – Disease Incidence; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST – Square Root transformation)

Table 11.6: Effect of fungicides on grain yield with respect to neck blast of rice, Kharif, 2022

Tuccetor					Neck	blast gr	Neck blast grain yield (Kg/ha)	Kg/ha)			
realment	DOSE/L	JDP	\mathbf{KAU}	TNV	MLN	MND	NLM	PNP	RNC	RNR	Mean
T1- Difenoconazole 25% EC	0.5 ml	3380	1688	3500	2570	4591	3865	3544	4902	6840	4120
T2- Isoprothiolane 40% EC	1.5 ml	3518	4106	3300	2569	4530	3333	3591	5039	7026	4113
T3- Kasugamycin 3% SL	2.0 ml	4005	3630	3425	2500	3102	3260	3175	2890	7311	4033
T4- Kitazin 48% EC	1.0 ml	4253	3611	3250	2431	2617	3157	3303	5761	7373	3973
T5- Propineb 70% WP	3.0 g	3788	3942	3650	2222	2526	3552	2969	5125	7251	3892
T6- Tebuconazole 25.9% EC	1.5 ml	3973	3310	3450	2361	4773	4007	3812	5924	7467	4342
T7- Thifluzamide 24% SC	0.8 g	3820	3288	3525	2292	4321	4367	3089	5374	8699	4086
T8-Control	1	2950	2855	3750	1736	1141	2854	2417	4808	5630	3127
General Mean		3711	3579	3481	2335	3450	3549	3238	5353	6949	
LSD $(a) 5\% (P=0.05)$		73.25	175.49	110.60	172.61	95.94	273.45	167.86	263.20	446.58	
C.V.		2.79	6.93	4.49	9.05	3.93	10.90	7.33	372.22	60.6	
Disease		Z	N	N	Z	Z	N	Z	A	A	

Sheath blight: Fungicides were evaluated against sheath blight disease at 14 disease hot spot locations. The experiment was conducted under artificial inoculation at all the test locations except Mandya and Moncompu. The data from Bankura and Raipur were excluded from the analysis due to various fungicides used in this trial which in turn deviated from the technical program. Disease severity was observed at all thirteen test locations and only disease incidence was observed at Rajendranagar. Both disease severity and incidence were observed at five locations viz., Cuttack, Ludhiana, Marateru, Masodha, and Pant Nagar. All the centers uniformly applied two sprays of fungicidal treatments. Disease severity in check plots varied between 91.4% (Chinsurah) and 58.6% (Moncompu). Disease severity on untreated plot was very high (>50%) at most of the test locations viz., Chinsurah (71.8%), Bankura (91.1%), IIRR (91.4%), Cuttack (68.4%), Gangavathi (86.3%), Mandya (69%), Maruteru (60.1%), Masodha (75.4%), Pantnagar (75.5%), Chiplima (64.1%) and Moncompu (58.6%); and high (30-50%) at Ludhiana (47.8%) and Raipur (33.3%). Disease incidence was very high at Ludhiana (99.3%), Cuttack (70.2%), Maruteru (78.29%), Pantnagar (96.6%), and Masodha (54.9%) and Rajendranagar (62.2%).

All fungicidal applications significantly reduced the sheath blight compared to control across the test locations. Commercial fungicide difenoconazole 25% EC reduced disease severity at a maximum of five locations *viz.*, Chinsurah (22.6%), ICAR-IIRR (30.9%), Cuttack (17.2%), Mandya (15.0) and Moncompu (8.06%). The same treatment reduced the severity on par with other best treatments at Maruteru (35.0%) and Masodha (27.7%). Tebuconazole 25.9% EC (1.5 ml/L) also significantly reduced the severity at four locations *viz.*, Gangavathi (28.2%), Ludhiana (8.0%), Mandya (15%) and Masodha (25.8%). and on par with other best treatments at Cuttack (19.4%) and Maruteru (34.6%). Thifluzamide 24% SC (0.8g/L) significantly reduced the severity maximum at three locations viz., Chiplima (11.5%), Maruteru (31.9%), and Pant Nagar (35.6%). with a mean disease severity of 35.8%. The overall mean disease severity from all 11 locations was low in difenoconazole 25% EC (33.8%) followed by Tebuconazole 25.9% EC (37.0%) and thifluzamide 24% SC (42.0%).

Tebuconazole 25.9% EC (1.5 ml/L) significantly reduced the incidence at Masodha (54.9%) and Pant Nagar (62.5%) and was on par with the best treatments at Cuttack (21.6) and Mareteru (48.0). Commercial fungicides thifluzamide 24% SC and difenoconazole 25 EC significantly reduced the incidence and were on par with each other at different locations. Thifluzamide 24% SC also showed low mean disease incidence (40.30%) followed by tebuconazole 25.9% EC (1.5 ml/l) and difenoconazole 25 EC (1.0 ml/l) at 41.5% and 47.6%, respectively (Fig.11.1C and Table. 11.7 & 11.8).

Grain yield in the experimental plots was recorded at all the test locations. It was observed that grain yield was more in fungicide treated plots compared to check plot (3865 Kg/ha). The highest yield was recorded in the plots where tebuconazole 25.9% is sprayed (5436 Kg/ha) followed by difenoconazole 25 EC (5368 Kg/ha) and thifluzamide 24% SC (5350Kg/ha) sprayed plots (Table 11.8).

Table 11.7: Evaluation of fungicides against sheath blight disease incidence of rice, Kharif, 2022

T	T. C. T.					Sheath !	Sheath blight disease Severity (%)	ease Seve	rity (%)				
ı reatment	Dose/L	CHN	CHP	GNV	IIRR	TAD	MND	MSD	MTU	MNC	NRRI	PNT	Mean
T1- Difenoconazole	0.5 ml	22.6	20.0	37.8	30.9	22.6	15.0	27.7	34.9	8.1	17.2	44.6	33.8
25% EC		(28.4)	(26.6)	(37.9)	(33.8)	(28.4)	(22.8)	(31.8)	(36.2)	(16.5)	(24.5)	(41.7)	
T2- Isoprothiolane	1 5 m	39.4	37.0	40.9	63.3	8.5	19.0	42.2	41.3	11.9	23.0	50.5	7 7 7
40% EC	IIII C.1	(38.9)	(37.5)	(39.8)	(52.7)	(17.0)	(25.8)	(40.5)	(40.0)	(20.2)	(28.7)	(45.3)	75.7
T3- Kasugamycin) 0 m	44.3	38.5	43.6	0.79	21.0	28.0	33.6	35.2	31.4	35.6	51.7	0 22
3% ST	7.0 IIII	(41.7)	(38.4)	(41.4)	(54.9)	(27.3)	(31.9)	(35.5)	(36.2)	(34.1)	(36.6)	(46.0)	0.00
T4- Kitazin 48%	1 0 221	25.0	27.0	41.9	55.7	25.0	38.0	38.1	38.1	24.1	42.2	49.7	10.2
EC	1.0 1111	(30.0)	(31.3)	(40.4)	(48.3)	(30.0)	(38.1)	(38.1)	(38.1)	(29.4)	(40.5)	(44.8)	40.3
T5- Propineb 70%	302	44.2	20.7	46.3	52.8	11.9	21.0	39.3	42.2	25.0	28.8	6.95	797
WP	3.0.8	(41.7)	(27.1)	(42.9)	(46.6)	(20.2)	(27.3)	(38.8)	(40.5)	(30.0)	(32.5)	(49.0)	10.0
T6- Tebuconazole	1 5 m	27.5	26.3	28.2	36.1	80.8	15.0	25.7	34.7	20.3	19.4	43.3	0 92
25.9% EC	IIII C. I	(31.6)	(30.8)	(32.1)	(36.9)	(16.5)	(22.8)	(30.5)	(36.1)	(26.8)	(26.1)	(41.1)	50.3
T7- Thifluzamide	280	30.4	11.5	32.8	44.8	15.3	16.0	29.5	31.9	27.2	21.6	35.6	12.0
24% SC	0.0 8	(33.5)	(19.8)	(34.9)	(42.0)	(23.1)	(23.6)	(32.9)	(33.8)	(31.4)	(27.7)	(36.6)	47.0
To Contact		71.7	64.1	86.3	91.4	47.8	0.69	75.4	60.1	58.6	68.4	75.4	72.0
10- Collidor	1	(57.9)	(53.2)	(68.3)	(72.9)	(43.8)	(56.2)	(60.2)	(50.8)	(50.0)	(55.8)	(60.3)	0.67
General Mean		40.4	32.2	45.7	55.3	19.7	29.4	40.6	40.5	28.4	34.1	51.9	
LSD $(a) 5\% (P=0.05)$	(5)	2.4	3.7	3.0	3.8	1.8	2.9	1.9	5.4	8.9	3.2	1.1	
C.V.		8.9	14.7	8.1	16.5	10.8	14.8	7.0	19.2	37.1	14.3	2.6	
Transformation		AT	AT	AT	AT	AT	AT	AT	AT	AT	AT	AT	
Disease		A	A	A	A	A	Ν	Y	Y	Ν	A	Y	
(A)		J - 7 - 1 - 17		1	L	J							

(DS - Disease Severity; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Table 11.8: Evaluation of fungicides against sheath blight disease incidence of rice, *Kharif*, 2022

			Shea	th blight	t disease	Incidenc	e (%)	
Treatment	Dose/L	LUD	MTU	MSD	NRRI	PNT	RNR	Mean
T1- Difenoconazole 25% EC	0.5 ml	71.9 (58.0)	45.3 (42.3)	28.1 (32.0)	18.8 (25.7)	65.2 (53.9)	56.0 (48.5)	47.6
T2- Isoprothiolane 40% EC	1.5 ml	30.0 (33.3)	59.9 (51.1)	40.0 (39.3)	29.2 (32.7)	70.7 (57.2)	60.3 (50.9)	48.4
T3- Kasugamycin 3% SL	2.0 ml	54.4 (47.5)	56.8 (49.2)	33.2 (35.2)	40.8 (39.7)	72.6 (58.5)	59.7 (50.6)	52.9
T4- Kitazin 48% EC	1.0 ml	68.1 (55.6)	63.2 (52.8)	35.6 (36.7)	48.2 (44.0)	67.2 (55.1)	60.5 (51.1)	57.1
T5- Propineb 70% WP	3.0 g	40.3 (39.4)	63.5 (53.3)	36.6 (37.2)	32.4 (34.7)	75.4 (60.3)	59.3 (50.4)	51.3
T6- Tebuconazole 25.9% EC	1.5 ml	35.5 (36.6)	48.0 (43.8)	24.8 (29.9)	21.6 (27.7)	62.4 (52.2)	56.4 (48.7)	41.5
T7- Thifluzamide 24% SC	0.8 g	54.0 (47.3)	47.5 (43.5)	30.8 (33.7)	25.0 (30.0)	58.1 (49.7)	26.3 (30.9)	40.3
T8- Control	-	99.3 (85.3)	78.3 (62.6)	54.8 (47.8)	70.2 (56.9)	96.6 (79.4)	62.2 (52.1)	76.9
General Mean		54.5	59.6	36.6	38.2	71.9	55.0	
LSD @ 5% (P=0.0)	5)	3.0	9.6	2.1	3.4	1.4	2.5	
C.V.	•	6.6	23.4	8.2	13.6	2.4	6.5	
Transformation		AT	AT	AT	AT	AT	AT	
Disease		A	A	A	A	A	A	

(DI – Disease Incidence; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

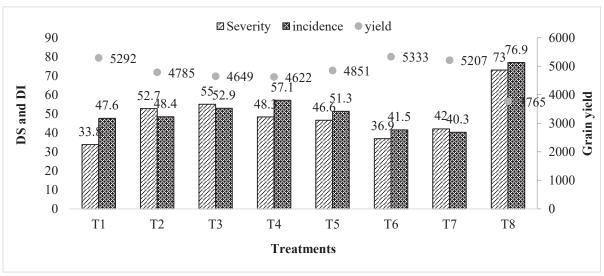


Figure 11.1C: Effect of fungicides against sheath blight (Severity-11 location; Incidence-6 location) of rice, *Kharif-*202

Table 11.9: Effect of fungicides on grain yield with respect to sheath blight of rice, Kharif, 2022

T	Dose/					Shea	Sheath blight grain yield (Kg/ha)	t grain	yield (K	g/ha)				
ıreaumem	Γ	CHN	CHP	GNV	IIRR	TND	MND	MINC	MSD	MTU	NRRI	LNd	RNR	Mean
T1- Difenoconazole 25% EC	0.5 ml	4704	5713	6012	4457	4998	4745	7565	3713	3865	5180	5711	6840	5292
T2- Isoprothiolane 40% EC	1.5 ml	4144	5167	5350	3434	6034	4527	9809	2963	3333	4250	5109	7026	4785
T3- Kasugamycin 3% SL	2.0 ml	3758	5273	4992	3114	5353	3172	6818	3338	3260	4040	2365	7311	4649
T4- Kitazin 48% EC	1.0 ml	4597	5433	5708	3768	5005	2478	8625	3175	3157	3620	5261	7373	4622
T5- Propineb 70% WP	3.0 g	4077	5550	5348	3846	5832	4483	5885	3063	3552	4280	5043	7251	4851
T6- Tebuconazole 25.9% EC	1.5 ml	4670	5460	6100	4196	6255	4635	9689	3825	4007	4840	5641	7467	5333
T7- Thifluzamide 24% SC	0.8 g	4827	5817	5782	3630	5807	4515	0029	3613	4367	4460	6264	8699	5207
T8-Control	-	3340	4870	4054	2663	4466	1392	5485	2188	2854	3320	4920	5630	3765
General Mean		4202	5367	5333	3639	5549	3600	6238	3166	3504	4116	5372	5969	4754
LSD @ 5% ($P=0.05$)		293.4	156.9	316.3	257.6	141.6	137.7	769.3	154.5	273.4	405.2	93.2	446.6	1
C.V.		6.7	3.6	7.1	8.1	3.2	5.2	17.0	8.9	10.9	13.5	2.1	9.1	1
Disease		A	А	А	А	А	Z	Z	А	A	A	A	A	1

Sheath rot: The fungicidal molecules were tested against sheath rot disease at six locations namely Aduthurai, Navasari, Nawagam, Mandya, Maruteru and Titabar. Both disease severity and incidence was recorded at Navasari, Nawagam, and Titabar. Only disease severity was observed at Aduthurai, and only disease incidence was observed at Mandya, Maruteru. The test fungicidal products were evaluated against the disease under natural incidence at most of the locations except Maruteru and Titabar. Uniformly two sprays of fungicides were applied in all the centers. Disease severity in check plots was very high (>50%) at Aduthurai (58.6%); high (30-50%) at Navasari (39.5%) and Nawagam (37.6%) and Titabar (46.6%). Disease incidence in check plots was very high (>50%) at Nawagam (89.7%), Mandya (66%); and moderate at Navasari (43.3%), Titabar (46.4%), and Maruteru (30.0). All the fungicides significantly reduced the disease incidence and severity when compared to check and also increased the yield.

Among all the test fungicides tebuconazole 25.9% EC reduced the severity at Navasari (20.7%) and Titabar (9.8%), with mean severity from four locations being 24.9%. treatment isoprothiolane 40% EC has maximum reduced the severity at Nawagam (18.5%). Difenoconazole 25 EC (1.0 ml/L) reduced the disease severity on par with the best treatments at Navasari (22.4%).

Regarding, disease incidence treatment (T6) tebuconazole 25.9% EC (1.5ml) significantly reduced the incidence at two locations namely, Navasari (23.8%) and Titabar (13.7%) compared to other treatments. The mean disease incidence from five test locations was low at tebuconazole 25.9% EC (31.5%) followed by difenoconazole 25 EC (31.8%) (Fig.11.1D; Table 11.10). The mean yield across the experimental locations in check plot was 3521 Kg/ha. Among the treatments, tebuconazole 25.9% EC sprayed plot yielded higher (5064 Kg/ha) compared to other treatments followed by difenoconazole 25 EC (0.5ml) (5007 Kg/ha), (Table 11.11).

Table 11.10: Evaluations of fungicides against Sheath rot disease severity and incidence of rice, Kharif, 2022

	1/050		Disc	Disease severity (%)	y (%)			1	Disease incidence (%)	dence (%)		
rearment	T/asof	ADT	SAN	SMN	TTB	Mean	MND	NLM	SMN	SAN	LLB	Mean
T1- Difenoconazole	0.5 ml	32.7	22.4	26.1	24.9	26.5	16.0	18.6	71.8	26.9	25.3	31.8
25% EC			(28.2)	(32.1)	(34.5)		(23.6)	(23.7)	(58.0)	(31.3)	(30.2)	
T2- Isoprothiolane 40%	1 5 m	28.1	23.7	17.2	31.6	7 7 7	23.0	23.0	65.3	28.3	31.2	24.2
EC	шп С.1	70.1	(29.1)	(32.7)	(34.9)	/ · / 7	(28.7)	(28.4)	(53.9)	(32.2)	(33.9)	7:40
T3- Kasugamycin 3%	7 0 201	7 0 1	30.6	33.3	26.1	316	24.0	22.8	83.4	37.6	26.8	20.0
SL	7.0 IIII	ر.0+ ر.0	(33.6)	(35.4)	(36.5)	0.4.0	(29.3)	(28.3)	(0.99)	(37.8)	(31.2)	20.7
74 Vitania 1807 EC	1 0 221	202	29.5	22.4	17.3	0.70	41.0	28.0	71.9	35.6	19.2	000
14- Nitazin 48% EC	1.0 ml	50.5	(32.9)	(35.0)	(36.3)	24.9	(39.8)	(31.8)	(58.0)	(36.6)	(25.9)	23.60
TX 7002 dominon TX	200	273	28.3	23.1	29.0	200	38.0	28.6	79.1	32.9	32.2	777
13- Fropines 70% WF	3.0 g	5.75	(32.1)	(34.5)	(36.0)	7.67	(38.1)	(32.3)	(62.8)	(34.9)	(34.5)	7.74
T6- Tebuconazole	1 51	700	20.7	30.5	8.6	0.70	17.0	22.9	80.1	23.8	13.7	215
25.9% EC	IIII C.1	30./	(27.0)	(31.3)	(34.0)	24.9	(24.4)	(28.4)	(63.5)	(29.2)	(21.7)	51.5
T7- Thifluzamide 24%	~ 0 0	77.7	27.0	18.5	21.4	200	26.0	23.6	64.9	30.1	23.2	326
SC	0.0 g	7./+	(31.3)	(34.0)	(35.7)	70.7	(30.7)	(28.8)	(53.7)	(33.3)	(28.8)	23.0
To Control		9 05	39.4	37.5	46.6	751	0.99	29.9	<i>L</i> .68	43.3	46.4	55 1
10- COIIIIOI		Jo.0	(38.9)	(38.6)	(38.4)	1.0	(54.3)	(33.2)	(71.3)	(41.2)	(42.9)	1.00
General Mean		41.4	27.7	26.1	25.9	30.3	31.4	24.7	75.8	32.3	27.3	38.3
LSD @ 5% (P=0.05)		4.4	3.0	3.9	0.5	ı	5.8	3.6	3.5	2.5	3.9	1
C.V.		14.2	15.1	21.0	2.5	1	26.3	9.9	6.61	11.1	21.1	1
Transformation		NT	AT	AT	AT	ı	AT	AT	AT	AT	AT	1
Disease		Z	Z	Z	A	1	Z	N	Z	Z	A	1
(Discussion the monocuthosis in dis		Jacob San Pool	T V	it come of or one	(45		Ĭ					

(Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Table 11.11: Evaluation of fungicides on grain yield with respect to Sheath rot of rice, *Kharif*, 2022

Tourse	D /I		Sheath	rot dise	ase gra	in yield	(Kg/ha))
Treatment	Dose/L	ADT	MND	MTU	NVS	NWG	TTB	Mean
T1- Difenoconazole 25% EC	0.5 ml	5190	4570	3865	6051	6230	4135	5007
T2- Isoprothiolane 40% EC	1.5 ml	4842	3766	3333	5997	6891	3999	4805
T3- Kasugamycin 3% SL	2.0 ml	4618	3102	3260	5170	6156	4037	4390
T4- Kitazin 48% EC	1.0 ml	4813	2587	3157	5285	6475	4322	4440
T5- Propineb 70% WP	3.0 g	4695	2501	3552	5339	6378	3995	4410
T6- Tebuconazole 25.9% EC	1.5 ml	4594	4504	4007	6242	6248	4790	5064
T7- Thifluzamide 24% SC	0.8 g	4456	3686	4367	5392	6856	4197	4825
T8- Control	-	4331	1179	2854	4259	4771	3734	3521
General Mean		4692	3237	3549	5467	6250	4151	4558
LSD @ 5% (P=0.05)		243.5	103.7	273.4	374.6	635.6	79.8	
C.V.		7.3	4.5	10.9	9.7	14.4	2.7	
Disease		N	N	N	N	N	A	

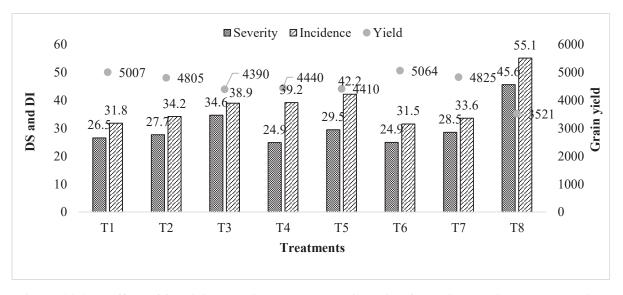


Figure 11.1D: Effect of fungicides against sheath rot (Severity-4 location; Incidence -5 location) of rice

Brown spot: Fungicides were evaluated against brown spot at seven different locations. Disease severity was recorded from five locations namely Chatha, Maruteru, Pattambi, Pusa, Sabour and Varanasi. Disease incidence was observed at Aduthurai. Bio-efficacy of the fungicides was tested under natural infection at all the centers except Pusa. Disease severity in the control plot was very high (>50%) at Pattambi (64.7%), Chatha (55.3 %), Sabour (56.6%), and; high (30-50%) at Pusa (37.8%), Varanasi (49.2%) and very low at Maruteru (2.2%). In Aduthurai very high disease incidence was recorded (51.2%). All seven fungicidal treatments performed better in reducing the brown spot at all six centers compared to the untreated control.

Among all the treatments, difenoconazole 25 EC (1.0 ml/L) significantly reduced the disease severity at six locations *viz.*, Chatha (15.1%), Pattambi (42.2%), Pusa (11.3%), Sabour (15.2%) Varanasi (19.3%) and Maruteru (1.8%) with mean severity of 17.5%. The same treatment (T1) showed significantly less disease incidence at Aduthurai (26.3). The next best treatment was tebuconazole 25.9% EC minimized the brown spot at Chatha (21.3%), Maruteru (1.8%), Pusa (16.3%) and Varanasi (22.2%), and showed low mean severity (24.1%) compared to other treatments. This was followed by thifluzamide 24% SC with mean disease severity of 23.41% (Table 11.12; Figure 11.1E). Regarding yield data, fungicide sprayed plots showed significantly higher yield compared to the control plot (3527 Kg/ha). The highest mean yield (4747 Kg/ha) was obtained from the plots where difenoconazole 25 EC (1.0 ml/L) was sprayed followed by tebuconazole 25.9% EC (4299 Kg/ha) and thifluzamide 24% SC (4246 Kg/ha) treatments (Table 11.13).

Grain discoloration: The experiment was conducted at Moncompu and Rajendranagar through natural occurrence. Both disease incidence and severity were observed at Moncompu and only incidence was observed at Rajendranagar. The low (<30%) disease incidence was recorded at both Moncompu (18.8%) and Rajendranagar (28%) and very high severity was recorded in Moncompu (70.8%). Difenoconazole 25 EC (1.0 ml/L) significantly reduced the disease incidence (5.8%) and severity (40.2%) at Moncompu compared to the other treatments. Kitazin 48% EC (1.0 ml/l) sprayed plot showed less disease incidence (9.9%) at Rajendranagar. Regarding yield data, fungicide sprayed plots showed significantly higher yield compared to the control plot (5557 Kg/ha). The highest mean yield of 7203 Kg/ha was obtained from the plots where difenoconazole 25 EC (1.0 ml/L) was sprayed plot followed by tebuconazole 25.9% EC (7181 Kg/ha) (Table 11.14; Fig 11.1F).

Stem rot: The experiment was conducted at Titabar through artificial inoculation and only disease incidence was observed. Disease pressure was recorded as very high (52.0%) in control plots. Tebuconazole 25.9% sprayed plot showed less disease incidence (10.7%) followed by Kitazin 48% EC (1.0 ml/l) treatment (16.5%). These two treatments produced more grain yield (4796 and 4623 Kg/ha) when compare to other treatments (Table 11.14; Fig 11.1G).

Table 11.12: Evaluation of fungicides against Brown spot disease severity and incidence of rice, Kharif, 2022

	Dose			Brown sp	Brown spot disease severity (%)	verity (%)			Incidence (%)
Treatment		CHT	MTU	PTB	PSA	SBR	VRN	Mean	ADT
T1- Difenoconazole 25% EC	0.5 ml	15.1 (22.8)	1.8 (1.3)	42.3	11.2 (19.6)	15.2 (22.9)	19.3 (26.0)	17.5	26.3 (30.8)
T2- Isoprothiolane 40% EC	1.5 ml	28.7 (32.4)	1.8 (1.3)	50.5	21.5 (27.6)	25.4 (30.2) 41.9 (40.3)	41.9 (40.3)	28.3	34.9 (36.2)
T3- Kasugamycin 3% SL	2.0 ml	37.3 (37.6)	1.9 (1.4)	9.05	28.5 (32.2)	41.5 (40.1) 39.6 (39.0)	39.6 (39.0)	33.1	35.2 (36.4)
T4- Kitazin 48% EC	1.0 ml	34.0 (35.67)	2.2 (1.4)	49.5	25.0 (30.0)	25.0 (30.0) 37.3 (37.7) 37.9 (38.0)	37.9 (38.0)	31.0	32.1 (34.5)
T5- Propineb 70% WP	3.0 g	44 (41.5)	2.1 (1.4)	43.0	26.5 (30.9)	26.5 (30.9) 34.1 (35.7) 32.3 (34.6)	32.3 (34.6)	30.3	28.4 (32.2)
T6- Tebuconazole 25.9% EC	1.5 ml	21.2 (27.4)	1.8 (1.3)	48.0	16.2 (23.7)	16.2 (23.7) 35.2 (36.4) 22.2 (28.1)	22.2 (28.1)	24.1	29.1 (32.7)
T7- Thifluzamide 24% SC	0.8 g	23.6 (29.1)	1.8 (1.3)	53.3	18.5 (25.5)	20.1 (26.6) 23.1 (28.7)	23.1 (28.7)	23.4	29.6 (32.9)
T8- Control	ı	55.3 (48.0)	2.3 (1.45)	64.7	37.5 (37.7)	56.6 (48.8)	49.2 (44.5)	44.3	51.2 (45.7)
General Mean		32.4	2.0	50.2	23.1	33.2	33.2	29.0	33.4
LSD @ 5% (P=0.05)		4.0	0.2	3.5	2.3	1.7	2.6		3.5
C.V.		17.4	13.2	6.6	14.1	6.3	9.5		15.0
Transformation		AT	LS	LN	AT	AT	AT		AT
Disease		Z	N	Ν	A	N	Z		N

(Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST - Square Root transformation)

Table 11.13: Effect of fungicides on grain yield with respect to Brown spot of rice, *Kharif*, 2022

Tuesdansond	Dogo/I]	Browns	pot dise	ease gra	in yield	l (Kg/ha	1)
Treatment	Dose/L	ADT	СНТ	PTB	PSA	SBR	VRN	Mean
T1- Difenoconazole 25% EC	0.5 ml	5190	3233	4463	4435	5839	5321	4747
T2- Isoprothiolane 40% EC	1.5 ml	4842	2426	3925	4050	5256	4601	4183
T3- Kasugamycin 3% SL	2.0 ml	4618	2490	3850	3875	3842	4542	3869
T4- Kitazin 48% EC	1.0 ml	4813	2540	3850	3975	4859	4272	4052
T5- Propineb 70% WP	3.0 g	4695	2306	4325	3950	5007	5107	4232
T6- Tebuconazole 25.9% EC	1.5 ml	4594	2703	4025	4250	5017	5203	4299
T7- Thifluzamide 24% SC	0.8 g	4456	2485	3750	4150	5595	5039	4246
T8- Control	-	4331	2267	3675	3475	3240	4176	3527
General Mean		4692	2556	3983	4020	4832	4783	4144
LSD @ 5% (P=0.05)		243.5	48.4	132.3	299.0	82.2	218.4	
C.V.		7.3	2.7	4.7	10.5	2.1	5.6	
Disease		N	N	N	A	N	N	

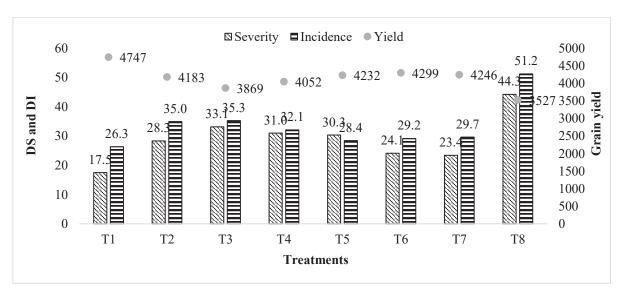


Figure 11.1E: Effect of fungicides against brown spot (Severity-6 location; Incidence-1 location) of rice

Table 11.14: Effect of fungicides on severity, incidence, and grain yield with respect to grain discolouration (GD) and stem rot of rice, *Kharif*, 2022

Treatment	Dose /I	GD severity (%)	Grain disc	discolouration incidence (%)	incidence	Grain d	Grain discolouration grain yield (kg/ha)	ion grain a)	Stem rot incidence (%)	Stem rot yield (kg/ha)
]	MINC	MNC	RNR	Mean	MNC	RNR	Mean	TTB	TTB
T1- Difenoconazole 25% EC	0.5 ml	40.2 (39.3)	5.8 (2.4)	14.0 (3.7)	10.0	7565	6840	7203	22.5 (28.3)	4409
T2- Isoprothiolane 40% EC	1.5 ml	47.1 (43.3)	8.6 (2.9)	11.3 (3.4)	10.0	9809	7026	6555	20.8 (27.1)	4458
T3- Kasugamycin 3% SL	2.0 ml	50.0 (45.0)	11.6 (3.4)	14.9 (3.8)	13.3	6818	7311	7064	23.2 (28.8)	4392
T4- Kitazin 48% EC	1.0 ml	52.2 (46.3)	9.4 (3.1)	9.9 (3.1)	6.7	8629	7373	6586	16.5 (23.9)	4623
T5- Propineb 70% WP	3.0 g	50.5 (45.3)	9.9 (3.1)	13.2 (3.6)	11.6	5885	7251	8959	23.5 (29.0)	4358
T6- Tebuconazole 25.9% EC	1.5 ml	46.3 (42.9)	7.9 (2.8)	10.3 (3.2)	9.1	9689	7467	7181	10.6 (19.0)	4796
T7- Thifluzamide 24% SC	g 8.0	42.8 (40.8)	6.9 (2.6)	16.6 (4.1)	11.8	0029	8699	6699	19.8 (26.4)	4610
T8- Control	-	70.8 (57.3)	18.84 (4.34)	28.1 (5.3)	23.5	5485	5630	5557	52.0 (46.2)	4116
General Mean		50.0	6.6	14.8	12.4	6403.9	6949.4	6676.7	23.6	4470.2
LSD @ 5% (<i>P</i> =0.05)		2.6	3.0	2.0	-	769.3	446.6	-	1.6	130.0
C.V.		7.4	42.8	19.5	-	17.0	9.1	-	6.3	4.1
Transformation		AT	ST	ST	1	ı	ı	-	AT	ı
Disease		Z	Z	Z	1	1	1	1	A	A

(Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST – Square Root transformation)

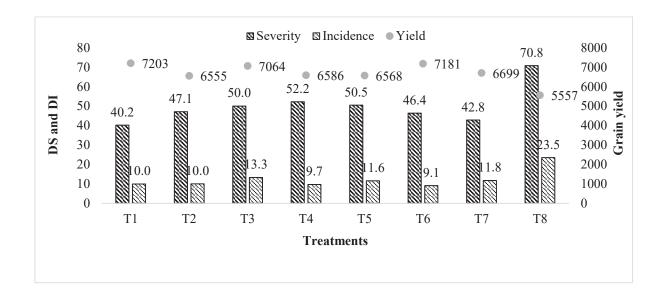


Figure 11.1F: Effect of fungicides against grain discoloration (Severity-1 location; Incidence-2 location) of rice

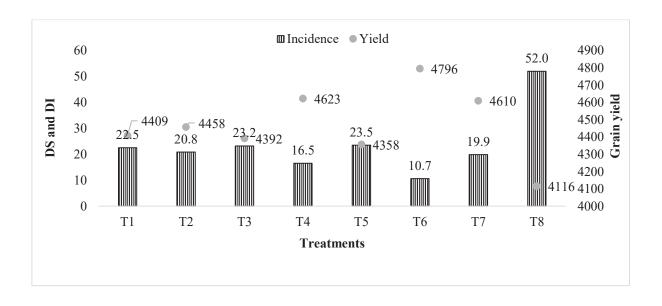


Figure 11.1G: Effect of fungicides against stem rot (Incidence-1 location) of rice

TRIAL No. 12: EVALUATION OF BIO-CONTROL FORMULATIONS AGAINST FUNGAL DISEASES

The integrated disease management trials were initiated with the identification and characterization of an efficient strain of *Trichoderma asperellum viz.*, *T. asperellum* Strain TAIK1 by ICAR-IIRR. In the trials conducted in the institute research farm and in the farmer's fields over a period of 4 years have established the plant growth capabilities and biocontrol efficiency against major pathogens of rice. With the objective of studying the efficiency of tow formulations of the strain viz., a liquid and solid bioformulation in different rice growing regions of the country, the formulations were tested against naturally occurring diseases of about seven centres.

The experiment was conducted with 8 different treatments *viz.*, T1=Seed treatment followed by seedling dip @ 10 g/l of solid Formulation, T2= Seed treatment followed by seedling dip @ 10 g/l of liquid Formulation, T3= T1 followed by foliar Spray @ 5g/l of solid Formulation, T4=T2 followed by foliar Spray @ 5g/l of liquid Formulation, T5=T1 followed by fungicide for the respective disease, T6=T2 followed by fungicide for the respective disease, T7= Only the fungicide for the respective disease and T8=Control (No treatment).

Results were obtained from seven centres, 5 centres viz., Maruteru, Moncompu, Navsari, Pantnagar and IIRR reporting on sheath blight disease, false smut, sheath rot and neck blast from Karaikal, leaf blast from Rewa and brown spot from Maruteru. Results obtained from different centres are discussed below.

Sheath blight: Among the different centres that has reported sheath blight percent disease severity (DS), Pantnagar has reported the highest DS of 76.19% followed by Moncompu at 70.34% in the untreated plots (Control). Among the different formulations tested viz., the liquid formulation was found to be better than the solid formulation. Similarly, the combination of bioagent formulation and fungicides were providing higher percent disease control and increased plant yield than when compared to the fungicide treatment alone. Among the different treatments overall for the management of the sheath blight disease, Moncompu reported the highest percentage control over the disease (DC) viz., 91.05% followed by IIRR (90.73) when applied with the liquid formulation of the bioagent as seed treatment followed by seedling dip @ 5g/l followed by Hexaconazole @ 2ml/l at tillering stage (T6). Among the treatments with the bioagents alone, the treatment with the liquid formulation of the bioagent as seed treatment followed by seedling dip @ 5g/l with liquid formulation was found to be offering the highest percent decrease of disease severity over control (80.67%). Regarding the plant yield, Maruteru centre reported the highest percent increase in grain yield over control (60.86%) when the plants were applied with bioagent as seed treatment followed by seedling dip @ 5g/l with liquid formulation followed by Hexaconazole @ 2ml/l at tillering stage (T6) followed by the treatment of bioagent as seed treatment followed by seedling dip @ 5g/l with solid formulation followed by Hexaconazole @ 2ml/l at tillering stage (T5) (Table 12.1 to 12.5).

Table 12.1: Evaluation of bio control formulations against Sheath Blight at Maruteru and

Moncompu

	compu				She	ath blig	ht			
			Maru	iteru			,	Moncom	pu	
S.No	Treatments	DS (%)	% Decrease over control (DS)	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)	DS (%)	% Decrease over control (DS)	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	47.96 (43.51)	29.28	3524.07	31.24	35.47 (36.20)	24.44 (29.45)	65.25	4200	29.95
T2	ST + SD @ (10 g/l) Liquid Formulation)	50.27 (45.19)	25.88	3084.26	14.86	38.17 (38.09)	34.07 (35.59)	51.56	4107	27.07
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	55.69 (48.78)	17.89	3155.55	17.52	40.25 (38.53)	24.07 (28.62)	65.78	4759	47.25
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	44.86 (41.78)	33.85	3785.18	40.97	29.54 (32.81)	19.26 (25.09)	72.62	4099	26.83
Т5	T1+ Fungicide for the respective disease	42.61 (40.60)	37.17	4203.70	56.55	28.22 (31.94)	8.15 (16.43)	88.41	5397	66.99
Т6	T2+ Fungicide for the respective disease	34.88 (35.89)	48.57	4319.44	60.86	22.60 (28.36)	6.30 (14.38)	91.05	4529	40.13
Т7	Fungicide for the respective disease	44.06 (40.86)	35.03	4081.48	52.00	31.67 (33.35)	32.59 (34.57)	53.67	5096	57.67
Т8	T8=Control	67.82 (55.78)		2685.18		50.27 (45.21)	70.34 (57.01)		3232	
	C.D.	10.077		455.71			8.66		N/A	
	SE(m)	3.403		153.91			2.83		577.84	
	SE(d)	4.813		217.67			4.00		817.19	
	C.V.	15.458		8.539			16.25		22.607	

(DS – Disease Severity; DI – Disease Incidence; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Table 12.2: Evaluation of bio control formulations against Sheath Blight at Navasari

					Nav	asari			
S.No	Treatments	DS (%)	% Decrease over control (DS)	Root length	Shoot length	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	29.67 (32.98)	26.25	16.55	91.33	9.87	19.62	5,024.33	18.84
Т2	ST + SD @ (10 g/l) Liquid Formulation)	27.73 (31.74)	31.07	17.067	92.00	10.53	19.887	5,065.33	19.81
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	25.8 (30.50)	35.87	17.483	92.33	10.80	20.353	5,290.00	25.13
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	24.9 (29.92)	38.11	17.507	95.67	11.00	20.9	5,392.33	27.55
Т5	T1+ Fungicide for the respective disease	19 (25.82)	52.77	19.067	99.33	12.67	23	5,902.67	39.62
Т6	T2+ Fungicide for the respective disease	16.93 (24.27)	57.92	20.683	100.67	13.20	23.067	6,270.33	48.32
Т7	Fungicide for the respective disease	22.1 (27.98)	45.07	17.683	98.33	11.73	21.773	5,514.67	30.44
Т8	T8=Control	40.23 (39.34)		14.367	81.33	8.47	18.433	4,227.67	
	C.D.	2.88		1.738	9.271	0.596	0.777	798.109	
	SE(m)	0.94		0.568	3.027	0.195	0.254	260.6	
	SE(d)	1.33		0.803	4.281	0.275	0.359	368.545	
	C.V.	5.38		5.602	5.586	3.055	2.103	8.459	

⁽DS – Disease Severity; DI – Disease Incidence; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Table 12.3: Evaluation of bio control formulations against Sheath Blight in Pantnagar

	e 12.5. Evaluation of bio					eath bl				
S.No	Treatments	DS (%)	% Decrease over control (DS)	Root length	Shoot length		1000 grain weight	Dry matter content (g)	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	51.81 (46.02)	32.00	8.26	118.27	50.33	26.52	363.33	5584.67	12.83
T2	ST + SD @ (10 g/l) Liquid Formulation)	48.53 (44.14)	36.30	8.43	118.80	52.00	26.54	393.33	5719.67	15.56
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	42.36 (40.59)	44.41	9.24	118.73	54.33	26.58	441.67	5819.33	17.57
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	41.06 (39.83)	46.10	9.64	119.00	57.33	27.42	491.67	6019.67	21.62
Т5	T1+ Fungicide for the respective disease	40.42 (39.46)	46.94	9.55	119.69	59.00	27.08	510.00	6153.33	24.32
Т6	T2+ Fungicide for the respective disease	38.82 (38.52)	49.05	9.81	120.40	61.67	27.09	551.67	6304.00	27.36
Т7	Fungicide for the respective disease	43.40 (41.19)	43.04	9.68	119.07	56.33	26.63	497.33	6054.67	22.32
Т8	T8=Control	76.19 (60.80)		7.60	115.93	44.67	24.98	310.33	4949.67	
	C.D.	1.989		1.108	1.771	4.251	1.064	71.83	160.50	
	SE(m)	0.650		0.362	0.578	1.388	0.348	23.45	52.40	
	SE(d)	0.919		0.512	0.818	1.963	0.491	33.17	74.11	
	C.V.	2.568		6.945	0.844	4.415	2.262	9.13	1.55	

(DS – Disease Severity; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Table 12.4: Evaluation of bio control formulations against Sheath blight at IIRR

					Sh	eath b				
S.No	Treatments	DS (%)	% Decrease over control (DS)		Shoot length	No of	1000 grain weight	Dry matter content (g)	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	18.22 (25.26)	67.78	45.20	81.50	14.33	17.13	1,520.00	5933.33	15.96
T2	ST + SD @ (10 g/l) Liquid Formulation)	17.59 (24.79)	68.88	49.30	81.50	14.00	16.15	1,460.00	6030.00	17.85
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	12.35 (20.57)	78.16	54.10	91.50	17.00	19.08	1,606.67	6540.00	27.82
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	10.93 (19.30)	80.67	53.80	90.71	18.00	20.13	1,786.67	6400.00	25.08
Т5	T1+ Fungicide for the respective disease	6.45 (14.70)	88.60	35.20	72.40	13.00	15.88	1,466.67	5436.67	6.25
Т6	T2+ Fungicide for the respective disease	5.24 (13.23)	90.73	34.20	72.48	13.00	15.51	1,453.33	5836.67	14.07
T7	Fungicide for the respective disease	11.46 (19.78)	79.73	34.00	68.35	11.67	13.44	1,423.33	5370.00	4.95
Т8	T8=Control	56.54 (48.74)		32.10	81.50	10.00	12.13	1,306.67	5116.67	
	C.D.	0.499		0.585	0.922	1.424	0.618	67.894	183.97	
	SE(m)	0.163		0.191	0.301	0.465	0.202	22.169	60.07	
	SE(d)	0.23		0.27	0.426	0.658	0.285	31.352	84.95	
	C.V.	1.212		0.783	0.668	5.805	2.16	2.555	1.78	

(DS – Disease Severity; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Table 12.5: Comparison of the effect of bio formulations against Sheath Blight in different centres

		Mar	Maruteru	Moncompu	ndwo	Navsari	sari	Pantnagar	agar	IIRR	R
S.No	Treatments	% Decrease over control (DC)	% Increase in Grain Yield	% Decrease over control (DC)	% Increase in Grain Yield	% Decrease over control	% Increase in Grain Yield	% Decrease over control	% Increase in Grain Yield	% Decrease over control	% Increase in Grain Yield
L1	ST + SD @ (10 g/l) (Solid Formulation)	29.28	31.24	65.25	29.95	26.25	18.84	32.00	12.83	67.78	15.96
Т2	ST + SD @ (10 g/l) Liquid Formulation)	25.88	14.86	51.56	27.07	31.07	19.81	36.30	15.56	88.89	17.85
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	17.89	17.52	82.29	47.25	35.87	25.13	44.41	17.57	78.16	27.82
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	33.85	40.97	72.62	26.83	38.11	27.55	46.10	21.62	29.08	25.08
T5	T1+ Fungicide for the respective disease	37.17	56.55	88.41	66.99	52.77	39.62	46.94	24.32	88.60	6.25
9L	T2+ Fungicide for the respective disease	48.57	60.86	91.05	40.13	57.92	48.32	49.05	27.36	90.73	14.07
L 7	Fungicide	35.03	52.00	53.67	27.67	45.07	30.44	43.04	22.32	£L'6L	4.95

False smut:

In the study of IDM against falsesmut disease using the bioagent *T.asperellum* Strain TAIK1, Karaikal centre reported the highest percent decrease in disease severity over control (91.80%) when the plant were treated with bioagent as seed treatment followed by seedling dip @ 5g/l with liquid formulation (T4) followed by the treatment bioagent as seed treatment followed by seedling dip @ 5g/l with solid formulation (T3). Interestingly the application of fungicide Propiconazole @ 1ml/l at booting stage either alone (T7) or in combination with the bioagents (T5 and T6) were not as effective as the bioagent applications. Similarly the bioagents were found to induce highest percent decrease in grain yield over control T4 and T3 in that order viz., 26.20 % and 25.80% respectively (Table 12.6).

Table 12.6: Evaluation of bio control formulations against False smut at Karaikal

					False	smut			
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Dry matter content (g)	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)
T1	ST + SD @ (10 g/l) (Solid Formulation)	12.56 (20.74)	58.62	12.67	16.67	1473.33	5933	18.66	13.87 (21.85)
T2	ST + SD @ (10 g/l) Liquid Formulation)	10.71 (19.08)	64.71	12.67	17.67	1460.00	6130	22.60	11.93 (20.15)
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	4.57 (12.31)	84.94	14.67	18.33	1606.67	6290	25.80	4.6 (12.36)
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	2.49 (8.98)	91.80	16.00	20.00	1720.00	6310	26.20	2.87 (9.67)
Т5	T1+ Fungicide for the respective disease	5.28 (13.21)	82.60	13.33	17.00	1466.67	5477	9.54	9.67 (18.09)
Т6	T2+ Fungicide for the respective disease	5.02 (12.88)	83.46	12.67	17.33	1460.00	5800	16.00	6.93 (15.23)
T7	Fungicide for the respective disease	18.18 (25.21)	40.10	11.67	16.33	1380.00	5370	7.40	19.32 (26.06)
Т8	T8=Control	30.35 (33.40)		10.67	15.67	1266.67	5000		33.21 (35.15)
	C.D.	2.004		2.437	1.585	114.599	372.985		2.228
	SE(m)	0.654		0.796	0.518	37.419	121.788		0.728
	SE(d)	0.925		1.125	0.732	52.919	172.234		1.029
	C.V.	6.216		10.566	5.159	4.382	3.644		6.356

(DS – Disease Severity; DI – Disease Incidence; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Neck blast:

Karaikal centre has reported the effectivity of *T.asperellum* Strain TAIK1 either alone or in combination of the fungicide Isoprothiolane @ 1.5ml/l at panicle emergence against the neck blast disease. Accordingly the highest percent decrease in disease severity over control (78.85) when the plant were treated with bioagent as seed treatment followed by seedling dip @ 5g/l with liquid formulation (T4) followed by the treatment bioagent as seed treatment followed by seedling dip @ 5g/l with solid formulation (T3). Further the application of fungicide Isoprothiolane @ 1.5ml/l at panicle emergence either alone (T7) or in combination with the bioagents (T5 and T6) were not as effective as the bioagent applications. Also the bioagents were found to induce highest percent decrease in grain yield over control T4 and T3 in that order viz., 26.20 % and 25.80% respectively (Table 12.7).

Table 12.7: Evaluation of bio control formulations against Neck Blast at Karaikal

					Neck	k blast			
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Dry matter content (g)	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)
T1	ST + SD @ (10 g/l) (Solid Formulation)	9.67 (3.26)	60.53	12.67	16.67	1,473.3	5,933.3	18.66	11.37 (19.69)
T2	ST + SD @ (10 g/l) Liquid Formulation)	8.29 (3.04)	66.14	12.67	17.67	1,460.0	6,130.0	22.60	9.30 (17.73)
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	6.93 (2.81)	71.72	14.67	18.33	1,606.7	6,290.0	25.80	7.30 (15.35)
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	5.18 (2.48)	78.85	16.00	20.00	1,720.0	6,310.0	26.20	5.24 (13.19)
Т5	T1+ Fungicide for the respective disease	11.47 (3.52)	53.16	13.33	17.00	1,466.7	5,476.7	9.54	11.57 (19.80)
Т6	T2+ Fungicide for the respective disease	10.37 (3.35)	57.67	12.67	17.33	1,460.0	5,800.0	16.00	10.47 (18.72)
T7	Fungicide for the respective disease	15.49 (4.06)	36.76	11.67	16.33	1,380.0	5,370.0	7.40	15.91 (23.49)
Т8	T8=Control	24.49 (5.05)		10.67	15.67	1,266.7	5,000.0		33.21 (35.15)
	C.D.	0.445		2.437	1.585	114.599	372.985		3.059
	SE(m)	0.145		0.796	0.518	37.419	121.788		0.999
	SE(d)	0.205		1.125	0.732	52.919	172.234		1.413
	C.V.	7.294		10.566	5.159	4.382	3.644		8.484

(DS – Disease Severity; DI – Disease Incidence; Figures in the parenthesis indicate transformed means; ST – Square Root transformation)

Sheath rot:

The centre Karaikal reported the effectivity of *T.asperellum* Strain TAIK1 either alone or in combination of the fungicide Hexaconazole against the sheath rot disease. The complete control of disease reported as percent decrease in disease severity over control (100%) when the plant was treated with bioagent as seed treatment followed by seedling dip @ 5g/l with liquid formulation (T4) followed by the treatment bioagent as seed treatment followed by seedling dip @ 5g/l with solid formulation (T3). Further the application of fungicide Hexaconazole either alone (T7) or in combination with the bioagents (T5 and T6) were not as effective as the bioagent applications. Also the bioagents were found to induce highest percent decrease in grain yield over control T4 and T3 in that order viz., 26.20 % and 25.80% respectively (Table 12.8)

Table 12.8: Evaluation of bio control formulations against Sheath rot in Karaikal

	12.8: Evaluation of bio		<u> </u>			th Rot		-	
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Dry matter content (g)	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)
T1	ST + SD @ (10 g/l) (Solid Formulation)	4.13 (2.26)	62.23	12.67	16.67	1,473.3	5,933.3	18.66	4.27 (2.29)
T2	ST + SD @ (10 g/l) Liquid Formulation)	3.53 (2.12)	67.68	12.67	17.67	1,460.0	6,130.0	22.60	3.67 (2.15)
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	1.47 (1.56)	86.55	14.67	18.33	1,606.7	6,290.0	25.80	1.49 (1.57)
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	0.00 (1.00)	100.00	16.00	20.00	1,720.0	6,310.0	26.20	0.00 (1.00)
T5	T1+ Fungicide for the respective disease	3.21 (2.05)	70.61	13.33	17.00	1,466.7	5,476.7	9.54	3.23 (2.05)
Т6	T2+ Fungicide for the respective disease	2.59 (1.89)	76.34	12.67	17.33	1,460.0	5,800.0	16.00	2.60 (1.89)
T7	Fungicide for the respective disease	6.25 (2.69)	42.87	11.67	16.33	1,380.0	5,370.0	7.40	6.39 (2.71)
Т8	T8=Control	10.93 (3.45)	0.00	10.67	15.67	1,266.7	5,000.0		13.25 (3.77)
	C.D.	0.241		2.437	1.585	114.599	372.985		0.199
	SE(m)	0.079		0.796	0.518	37.419	121.788		0.065
	SE(d)	0.111		1.125	0.732	52.919	172.234		0.092
	C.V.	6.397		10.566	5.159	4.382	3.644		5.161

Leaf Blast:

The effectivity of *T.asperellum* Strain TAIK1 either alone or in combination of the fungicide against the leaf blast disease was reported by the Rewa centre. Results indicated that the treatment T6 viz., when applied with the liquid formulation of the bioagent as seed treatment followed by seedling dip @ 5g/l followed by application of fungicide was found to offer the highest percent decrease in the disease severity over control (57.99%) followed by treatment (T5) where the plants were applied with the solid formulation of the bioagent as seed treatment followed by seedling dip @ 5g/l followed by the fungicide (52.49%). The treatments T5 and

T6 were on par in increasing the grain yield of the treated plants viz., 14.78 and 13.61% respectively (Table 12.9).

Table 12.9: Evaluation of bio control formulations against Leaf blast at Rewa

	12.5. Evaluation of bio c			0	Leaf bla			
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Grain yield (Kg/ha)	Increase in Grain Yield 10.28 10.54 12.90 13.35 14.78 13.61	DI (%)
T1	ST + SD @ (10 g/l) (Solid Formulation)	12.8 (3.72)	24.26	8.83	26.07	4,047	10.28	15.7 (4.09)
T2	ST + SD @ (10 g/l) Liquid Formulation)	10.4 (3.37)	38.46	9.07	26.77	4,057	10.54	14.5 (3.94)
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	9.4 (3.22)	44.38	9.03	27.17	4,139	12.90	12.6 (3.71)
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	8.6 (3.09)	49.11	9.47	27.97	4,165	13.35	11.1 (3.47)
Т5	T1+ Fungicide for the respective disease	8.03 (3.00)	52.49	9.63	27.50	4,205	14.78	10.4 (3.37)
Т6	T2+ Fungicide for the respective disease	7.1 (2.85)	57.99	10.90	28.80	4,191	13.61	8.7 (3.11)
T7	Fungicide for the respective disease	8.9 (3.14)	47.34	9.80	28.17	4,095	12.13	11.4 (3.51)
Т8	T8=Control	16.9 (4.23)	0.00	8.57	25.60	3,635	0.00	24.43 (5.04)
	C.D.	0.176		0.735	0.878	81.344		0.190
	SE(m)	0.057		0.24	0.287	26.561		0.062
	SE(d)	0.081		0.339	0.406	37.563		0.088
	C.V.	2.984		4.415	1.822	1.131		2.838

(DS – Disease Severity; DI – Disease Incidence; Figures in the parenthesis indicate transformed means; ST – Square Root transformation)

Brown Spot:

In the study of IDM against brown spot disease using the bioagent *T.asperellum* Strain TAIK1 and the fungicide mancozeb, Maruteru centre reported that all the treatments of the bioagents alone and in combinations were at par in managing the disease. However, the bioagents and fungicide combination (T5, T6 and T7) were found to increase the grain yield over the other treatments (Table 12.10).

Table 12.10: Evaluation of bio control formulations against Brown Spot in Maruteru

			Brov	wn spot	
S.No	Treatments	DS (%)	% Decrease over control (DS)	Grain Yield	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	1.68 (1.63)	14.10	3,524.07	31.24
T2	ST + SD @ (10 g/l) Liquid Formulation)	1.53 (1.58)	21.79	3,084.26	14.86
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	1.58 (1.60)	19.23	3,155.55	17.52
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	1.53 (1.58)	21.79	3,785.18	40.97
T5	T1+ Fungicide for the respective disease	1.55 (1.59)	20.51	4,203.70	56.55
Т6	T2+ Fungicide for the respective disease	1.55 (1.59)	20.51	4,319.44	60.86
T7	Fungicide for the respective disease	1.55 (1.59)	20.51	4,081.48	52.00
Т8	T8=Control	1.95 (1.71)	0.00	2,685.18	0.00
	C.D.	N/A		455.719	
	SE(m)	0.03		153.916	
	SE(d)	0.043		217.67	
	C.V.	3.758		8.539	

TRIAL No.13: INTEGRATED PEST MANAGEMENT-SPECIAL TRIAL

The special integrated pest management trial was conducted against rice diseases at four different zones *viz.*, Northern zone (Pantnagar, Kaul); Eastern zone (Chiplima, Masodha); Western zone (Nawagam) and Southern zone (Aduthurai, Mandya). According to the existence of specific problems of each zone, Integrated Pest Management (IPM) module was designed and tested along with the farmers practices (FP). The detailed treatments can be referred from the AICRIP Plant Pathology Technical Programme, 2022. The trial was conducted by the experts from different disciplines viz., Entomology, Pathology and Weed science. With respect to diseases, disease severity was recorded at regular intervals starting from 15 days after transplanting (DAT) onwards to till the maturity of the crop both in the IPM and Farmers practices (FP) adopted fields. Later, Area Under the Disease Progress Curve (AUDPC) was calculated based on the weakly observation on disease severity to know the influence of the various management practices on the disease development. The results of the trail conducted at various locations are presented as below.

Northern zone

Under Northern zone, the trial was conducted at Pantnagar and Kaul. At Pantnagar, the trial was evaluated for the management of sheath blight, brown spot and bacterial blight. Adoption of IPM practices effectively reduced the disease progression of sheath blight (243 - 258 AUDPC units) when compared to Farmers practices (420 to 453 AUDPC units). Similar trend was observed with respect to brown spot disease, wherein the significant reduction was observed with respect to disease development. At Pantnagar the same IPM practices were not effective against bacterial blight disease. At Kaul, the trial was conducted for the management of leaf blast, neck blast, bacterial blight and sheath blight. The leaf blast AUDPC value of 210 and 182 units were reduced to 146 and 147 units respectively due to the adoption of IPM practices as against farmer management practices. In case of sheath blight disease, adoption of IPM practices reduced the AUDPC units from 120 to 89; 116 to 87. With respect to bacterial blight there is no significant difference was observed between IP and Farmer management practices (Table 13.1).

Table 13.1: AUDPC values based on disease severity (%) of rice diseases at different dates at Pantnagar and Kaul, *Kharif* – 2022

			<i>y</i>	A	UDPC Va	lues		
		P	antnagar]	Kaul	
	Treatment	Sheath blight	BS	BB	LB	NB	BB	Sheath blight
L1	IPM	243	28	2	146	23	10	89
	FP	422	96	24	210	27	26	120
L2	IPM	258	33	2	147	25	23	87
	FP	420	89	3	182	17	24	116
L3	IPM	244	30	2	-	-	-	-
	FP	453	98	2	-	-	-	-

(F- Farmer Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices; BS – Brown spot)

Eastern Zone

Trials were conducted at Chiplima and Masodha. Adoption of IPM Practices like seed treatment with Trichoderma @10g/kg recorded low disease severity (6.30 %) was 30 DAT for leaf blast as compared to farmers practices (without the seed treatment & fungicide spray) where in the disease severity was 17.33%. In case of brown spot disease, disease severity was reduced from 15.33% to 12.24% at 60 DAT.

Significant reduction in the disease development of leaf blast, neck blast and bacterial blight was recorded at Masodha. Adoption of IPM practices, reduced the disease severity of leaf blast and sheath blight to almost nil as compared to farmers practices. With respect to neck blast, bacterial blight the AUDPC values viz., 287 and 274 were reduced to 172 and 78 respectively (Table 13.2).

Table 13.2: AUDPC values based on disease severity (%) of rice diseases recorded at

different dates at Chiplima and Masodha, Kharif - 2022

		Chi	plima		Maso	dha	
					AUDPC	Values	
	Treatment	LB - Disease severity (%)	Brown spot	Leaf blast	Neck blast	BB	Sheath blight
L1	IPM	6.30	12.24	0	172	78	0
	FP	17.33	15.33	245	287	274	131.6

(F-Farmer Location; IPM - Integrated Pest Management Practices; FP-Farmer Practices; LB- Leaf Blast; BB- Bacterial blight)

Western Zone

Under this zone, the trial was conducted at Nawagam at 3 different locations for the management of sheath rot and grain discolouration. The AUDPC value was reduced due to the adoption of IPM practices (IPM = 308 - 311 AUDPC values; FP = 349 - 366 AUDPC values). Similarly, disease progress was low in case of grain discoloration (IPM = 119 - 128 AUDPC units; FP = 145 - 153 AUDPC values) in the IPM practices adopted field. At Navsari the trial was conducted at one location on three diseases viz., bacterial blight, sheath rot and glume discolouration. Adoption of IPM practices recorded reduced PDI compared to farmers practices (BB: IPM-7.5; FP-18.33, Sheath rot: IPM-4.3; FP-21.5, Glume discolouration IPM-23.66; FP-29.5) (Table 13.3).

Table 13.3: AUDPC values based on disease severity (%)of rice diseases recorded at

different dates at Nawagam and Navsari - Kharif '2022

	Nawa	ıgam		Navsar	i
Treatment	AUDPC	Values	Pe	ercent Disease	Index (%)
	Sheath rot	GD	BB	Sheath rot	GD
L1 - IPM	311	122	7.5	4.3	23.66
L1- FP	349	146	18.33	21.5	29.5
L2- IPM	308	119	-	-	-
L2 - FP	346	153	-	-	-
L3 - IPM	322	128	-	-	-
L3 - FP	366	145	-	-	-

(F- Farmer Location; IPM - Integrated Pest Management Practices; FP- Farmer Practices; GD- Glume Discolouration)

Southern Zone

The trial was conducted at Aduthurai and Mandya. At Aduthurai, adoption of IPM practices reduced the disease severity of bacterial blight. In all the three locations disease severity of was significantly reduced compared to farmers practices (L1 = IPM - 95; FP-258; L2 = IPM - 28; FP - 220; L3 = IPM - 53; FP - 225). In case of false smut disease, among the three locations, application of IPM practices were effective at two locations, wherein the disease was reduced from 119 to 41 AUDPC units (L1) and 64 to 11 AUDPC units (L2) (Table 13.4). At Mandya, the IPM practices were evaluated against leaf blast wherein the AUDPC values reduced significantly (L1: IPM-77, FP-225; L2: IPM-83, FP-202 IPM-71, FP-179)

Table 13.4: AUDPC values based on disease severity (%) of rice diseases recorded at

different dates at Aduthurai and Mandya, Kharif '2022

		Aduthurai		Mandya
		AUDPC Values		AUDPC Values
		Bacterial Blight	False smut	Leaf Blast
L1	IPM	95	41	77
	FP	258	119	225
L2	IPM	28	11	83
	FP	220	64	202
L3	IPM	53	22	71
	FP	225	0	179

(L= Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices)

Central Zone

Under Central zone, the trial is conducted only at Jagdalpur, wherein IPM practices and Farmers practices were compared for the management of leaf blast, neck blast and sheath blight. The trial results revealed that in general the disease progress was significantly low in the IPM practices adopted field compared to the farmers practices. With respect to leaf blast, the AUDPC values were ranged from 0 to 141 in the IPM practices adopted field, whereas the values were ranged from 84 to 426 in the farmers practices adopted fields. Similar trend was also observed in case of neck blast wherein the AUDPC values were ranged from 0 to 135 as against 135 to 411 in farmers adopted practices. Similarly sheath blight disease severity was also reduced significantly wherein the AUDPC values were reduced from 225 to 42, 444 to 279 and 363 to 219 (Table 13.5).

Table 13.5: AUDPC values based on disease severity (%) of rice diseases recorded at

different dates at Jagdalpur, Kharif '2022

	Tr. 4		AUDPC Values	
	Treatment	Leaf Blast	Neck blast	Sheath blight
L1	IPM	0	48	42
	FP	173	159	225
L2	IPM	141	0	279
	FP	426	411	444
L3	IPM	0	135	219
	FP	84	213	363

(F- Farmer Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices)

TRIAL No.14: SPECIAL TRIAL ON YIELD LOSS ASSESSMENT DUE TO MAJOR RICE DISEASES – *Kharif* 2022

The yield loss trial was formulated to study the impact of the major rice diseases *viz.*, leaf blast, sheath blight, and bacterial blight on the grain yield of the rice crop. The trial includes 3 different treatments, i.e., different graded levels of disease infections and one control treatment where there is no infection of the pathogen. Each treatment is replicated five times in an RBD pattern. The respective pathogens were artificially inoculated by standardized method and observations were recorded as percent disease index. The trail was proposed at 11 hot spot locations and data was received from 10 locations. With respect to leaf blast, the trial was taken up at Jagdalpur, Malan, and Mandya and IIRR. In case of sheath blight, the trial was conducted at Gangavathi, Ludhiana, Mandya, Maruteru, Moncompu, and IIRR. The trial on bacterial blight was taken up at Maruteru, Moncompu, Pantnagar, Pattambi and IIRR. Trail details of each location are given in the Table 14.1.

Leaf blast

Leaf blast susceptible varieties *viz.*, Swarna (at Jagdalpur & Maruteru), HPU 2216 (at Malan), MTU 1001 (at Mandya) and TN 1 (at IIRR) were used for yield loss assessment. In all the locations, pathogen was artificially inoculated either spraying conidial suspension or supplementing with spreading of diseased leaves. Disease was recorded as percent disease index (PDI) and grain yield was recorded as kg/ha.

The highest Per cent disease index (PDI) of leaf blast was recorded at Malan (83.08%) followed by IIRR (59.26%), Jagdalpur (53.78%) and Mandya (43.4%), where pathogen was inoculated thrice at an interval of two days (T1). The disease severity was low in un-inoculated plots at Mandya (8.8%), IIRR (11.48%) and Malan (13.06%) and it was recorded as 40.00% at Jagdalpur. Regarding grain yield, across the locations, 59.88, 46.15, 39.02 and 18.34% of PDI reduced the grain yield up to 52.34, 38.36, 19.66 and 0% respectively. At Jagdalpur, the T1 treatment recorded 53.78% PDI, which reduced the grain yield up to 37.34%. There was no distinct variation between T2 and T3 treatment where the PDI was 44.89% and 43.11% respectively. Though the pathogen was not inoculated artificially in the T4 treatment, 40% PDI was recorded. At Malan, the trial results revealed that PDI of 83.08% recorded a grain yield of 1040 Kg/ha; 72.46 and 65.06% recorded 1460 Kg/ha, and 2040 Kg/ha respectively as against 3100 Kg/ha in the T4 treatment. About 66.45 % yield reduction was recorded with 83.08% PDI. At Mandya, 43.4% PDI was maintained in the T1 treatment, which resulted in a 78.03% yield reduction in the grain yield when compared to the control treatment. Similarly, 28% of PDI reduced the grain yield up to 53.01% (Table 14.2). At IIRR, 59.26, 39.26, 26.3 and 11.48% PDI recorded 27.53, 22.21,17.89 and 0% yield reduction respectively.

Table 14.1: Experimental details of yield loss assessments of rice diseases, Kharif-2022

rying Date								Date of activities	vities		
Genegavathi Sheath blight GNV-10-89 Artificial 156,072022 08.10.2022 14.10.2022	S. No	Location	Disease Recorded		Screening	Sowing/ Transplanting	Inoculation	Initial symptom	Spraying Date	Observation	Harvesting
Jugdalpur Leaf blast Swarma Artificial 25.06.2022 11.08.2022 12.08.2022 1.09.2022	1	Gangavathi	Sheath blight	GNV-10-89	Artificial	16.07.2022 25.08.2022	08.10.2022	14.10.2022	-	14.10.2022	21.12.2022
Ludhkinna Sheath blight PR114 Artificial 1006.2022 31.08.2022 21.09.2022 16.09.2022 Malan Leaf blast HPU 2216 Artificial 2.006.2022 18.08.2022 16.09.2022 16.09.2022 Mandya Leaf blast MTU 1001 Artificial 11.08.2022 07.10.2022 12.10.2022 12.10.2022 Moncompumpaner Sheath blight Uma Artificial 07.06.2022 17.10.2022 12.10.2022 28.10.2022 Manuteru Bacterial leaf blight Uma Artificial 12.07.2022 27.08.2022 04.09.2022 28.10.2022 Maruteru Bacterial leaf blight WTU - 2077 Artificial 12.07.2022 13.09.2022 14.09.2022 14.09.2022 Pantungar Bacterial leaf blight TNI Artificial 27.06.2022 22.09.2022 14.09.2022 14.09.2022 Pantungar Bacterial leaf blight TNI Artificial 27.06.2022 22.09.2022 14.102.2022 14.102.2022 Pantungar Bacterial leaf blight TNI	2	Jagdalpur	Leafblast	Swarna	Artificial	25.06.2022 25.07.2022	,	12.08.2022	1	07.09.2022	25.12.2022
Malan Leaf blast HPU 2216 Artificial 20.06.2022 18.08.2022 10.08.2022 11.00.202 11.00.202 10.09.2022 11.00.202 12.00.2022 12.00.2022 12.00.2022 12.00.2022 12.00.2022 12.00.2022 12.00.2022 12.00.2022 12.00.2022 12.00.202 12.00.2022 12.00.202 12.0	3	Ludhiana	Sheath blight	PR114	Artificial	10.06.2022 25.07.2022	31.08.2022	21.09.2022	1	21.09.2022	14.10.2022
Mandya Leaf blast MTU1001 Artificial 11.08.2022 07.10.2022 12.10.2022 12.10.2022 Moncomputerul Sheath blight Umas Artificial 07.06.2022 27.08.2022 07.10.2022 12.10.2022 28.10.2022 Moncomputerul Bacterial leaf blight Umas Artificial 10.06.2022 27.08.2022 04.09.2022 21.09.2022 Manuterul Sheath blight WTU-2077 Artificial 1.706.2022 13.09.2022 20.09.2022 21.09.2022 Pantambi Bacterial leaf blight MTU-2077 Artificial 2.077.2022 25.08.2022 22.09.2022 14.09.2022 Pantambi Bacterial leaf blight TN1 Artificial 2.076.2022 22.09.2022 22.09.2022 14.09.2022 Pattambi Bacterial leaf blight TN1 Artificial 2.06.2022 22.09.2022 12.09.2022 14.09.2022 Pattambi Bacterial leaf blight TN1 Artificial 2.06.2022 22.09.2022 22.09.2022 12.10.2022 14.10.2022 Artificial<	4	Malan	Leafblast	HPU 2216	Artificial	20.06.2022 21.07.2022	18.08.2022 20.08.2022 22.08.2022	,	06.09.2022 16.09.2022	25.10.2022	08.11.2022
Moncompu Autificial Moncompu Autificial Moncompu Autificial Moncompu Autificial Moncompu Autificial Descrial leaf blight MTU 2077 Artificial Descrial leaf blight MTU 2072 Artificial Descrial leaf blight MTU 2077 Artificial Descrial leaf blight MTU 2072 Artificial Descrial Descrial leaf blight MTU 2072 Artificial Descrial Descrial leaf blight MTU 2072 Artificial Descrial Desc	ų	N. cadara	Leafblast	MTU1001	Artificial	11.08.2022 05.09.2022	07.10.2022	12.10.2022	12.10.2022 28.10.2022	12.10.2022	03.01.2023
Moncomputation Actificial Dight Artificial Dight <td>0</td> <td>Manuya</td> <td>Sheath blight</td> <td>MTU1001</td> <td>Artificial</td> <td>11.08.2022 05.09.2022</td> <td>07.10.2022</td> <td>12.10.2022</td> <td>12.10.2022 28.10.2022</td> <td>12.10.2022</td> <td>03.01.2023</td>	0	Manuya	Sheath blight	MTU1001	Artificial	11.08.2022 05.09.2022	07.10.2022	12.10.2022	12.10.2022 28.10.2022	12.10.2022	03.01.2023
Maruteru Bacterial leaf blight NTU - 2077 Artificial 12.07.2022 13.09.2022 20.09.2022 21.09.2022 Maruteru Bacterial leaf blight NTU - 2077 Artificial 17.06.2022 12.09.2022 22.09.2022 14.09.2022 Pantmagar Bacterial leaf blight TNI Artificial 20.07.2022 22.09.2022 22.09.2022 14.10.2022 Pattambi Bacterial leaf blight TNI Artificial 20.07.2022 22.09.2022 12.10.2022 14.10.2022 Pattambi Bacterial leaf blight Jyothi Artificial 13.06.2022 22.09.2022 20.08.2022 14.10.2022 14.10.2022 IIRR Sheath blight Bacterial leaf blight Artificial 26.06.2022 29.08.2022 29.08.2022 29.08.2022 29.08.2022 IIRR Bacterial leaf blight Artificial 26.06.2022 29.09.202 13.09.2022 14.10.2022 14.10.2022 IRR Bacterial leaf blight Artificial 26.06.2022 09.09.22 13.09.2022 12.09.2022 12.09.2022 </td <td>7</td> <td>M</td> <td>Sheath blight</td> <td>Uma</td> <td>Artificial</td> <td>07.06.2022 27.06.2022</td> <td>27.08.2022</td> <td>04.09.2022</td> <td>05.09.2022</td> <td>25.09.2022</td> <td>22.10.2022</td>	7	M	Sheath blight	Uma	Artificial	07.06.2022 27.06.2022	27.08.2022	04.09.2022	05.09.2022	25.09.2022	22.10.2022
Maruteru Sheath blight Swarna (MTU 7029) Artificial 17.06.2022 12.09.2022 22.09.2022 14.09.2022 14.09.2022 10.10.2022 <th< td=""><td>٥</td><td>Moncompu</td><td>Bacterial leaf blight</td><td>Uma</td><td>Artificial</td><td>12.07.2022 03.08.2022</td><td>13.09.2022</td><td>20.09.2022</td><td>21.09.2022</td><td>11.10.2022</td><td>28.11.2022</td></th<>	٥	Moncompu	Bacterial leaf blight	Uma	Artificial	12.07.2022 03.08.2022	13.09.2022	20.09.2022	21.09.2022	11.10.2022	28.11.2022
Pantingar Bacterial leaf blight MTU - 2077 Artificial 17.06.2022 26.08.2022 27.08.2022 27.09.2022 27.09.2022 10.10.2022 27.09.2022 10.10.	t	Menter	Sheath blight	Swarna (MTU 7029)	Artificial	17.06.2022 20.07.2022	12.09.2022 13.09.2022	22.09.2022	14.09.2022 02.10.2022 19.10.2022	15.10.2022	04.12.2022
Pantnagar Bacterial leaf blight TN1 Artificial 27.06.2022 29.07.2022 22.09.2022 - 03.10.2022 13.10.2022 Pattambi Bacterial leaf blight Jyothi Artificial 13.06.2022 25.08.2022 25.08.2022 25.08.2022 25.08.2022 29.08.20	,	Maruteru	Bacterial leaf blight	MTU - 2077 (Krishnaveni)	Artificial	17.06.2022	26.08.2022 27.08.2022	02.10.2022	14.09.2022 27.09.2022 10.10.2022	06.10.2022	06.12.2022
Pattambi Bacterial leaf blight Jyothi Artificial 08.07.2022 02.08.2022 06.10.2022 25.08.2022 12.10.2022 25.08.2022 14.10.2022 29.08.2022 IIRR Sheath blight BPT 5204 Artificial 26.06.2022 16.07.2022 09.09.22 13.09.2022 13.09.202 - Bacterial leaf blight TN1 Artificial 16.07.2022 16.07.2022 09.09.22 12.09.2022 12.09.202 -	8	Pantnagar	Bacterial leaf blight	TN1	Artificial	27.06.2022 29.07.2022	22.09.2022		03.10.2022 13.10.2022	-	18.11.2022
IRR Sheath blight BPT 5204 Artificial 13.06.2022 16.07.2022 22.08.2022 25.08.2022 29.08.2022 29.08.2022 29.08.2022 IRR Sheath blight Artificial 26.06.2022 16.07.2022 09.09.22 13.09.2022 - Bacterial leaf blight TN1 Artificial 16.07.2022 16.07.2022 09.09.22 12.09.2022 -	6	Pattambi	Bacterial leaf blight	Jyothi	Artificial	08.07.2022 02.08.2022	06.10.2022	12.10.2022	14.10.2022	22.10.2022	06.11.2022
IRR Sheath blight BPT 5204 Artificial 26.06.2022 09.09.22 13.09.2022 .			Leafblast	TNI	Artificial	13.06.2022	22.08.2022 25.08.2022 29.08.2022	29.08.2022	29.08.2022	-	1
TN1 Artificial 26.06.2022 09.09.22 12.09.2022 -	10	IIRR	Sheath blight	BPT 5204	Artificial	26.06.2022 16.07.2022	09.09.22	13.09.2022	-	15.11.2022	12.12.2022
			Bacterial leaf blight	TN1	Artificial	26.06.2022 16.07.2022	09.09.22	12.09.2022	1	29.09.2022	10.12.2022

Table 14.2: Effect of leaf blast disease severity on rice grain yield, Kharif-2022

				Leaf Blast	ast							Leaf Blast		
		JDP			MLN			MND			IIRR		N	Mean
T. No	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control	IQA	% yield reduction over control
T1	53.78	1980	37.34	83.08 (65.75)	1040	66.45	43.40 (41.17)	1210	78.03	59.26 (50.32)	3133	27.53	59.88	52.34
T2	44.89	2360	25.32	72.46 (58.33)	1460	52.9	28.00 (31.87)	2589	53.01	39.26 (38.78)	3363	22.21	46.15	38.36
T3	43.11	2720	13.92	65.06 (53.76)	2040	34.19	21.60 (27.63)	4812	12.65	26.30 (30.82)	3550	17.89	39.02	19.66
T4	40.00	3160	0	13.06 (21.14)	3100	0	8.80 (17.19)	5509	0	11.48 (19.79)	4323	0	18.34	0.00
C.V (%)	7.21	8.99		3.06	14.2		7.63	5.43		3.24	3.53			
LSD @ 5% $(P = 0.05)$	4.52	316.49		2.09	373.8		3.1	263.97		2.26	253.7			
Transformation	NT			AT			AT			AT				
a raa						•	·							

(PDI – Percent Disease Index; Figures in the parenthesis indicates Arc sine transformation)

Treatment details:

T1- Inoculum sprayed thrice at an interval of 2 days (disease intensity is more than 50%) T2- Inoculum sprayed twice at an interval of 2 days (disease intensity is 30-50%) T3- Inoculum sprayed once (disease intensity is below 30%) T4- Un-inoculated + fungicide/antibiotic-treated control plot

Sheath blight: Sheath blight susceptible varieties *viz.*, GNV-10-89, BPT- 5204, PR114, MTU 7029, MTU 1001 and Uma were used as a test variety at Gangavathi, IIRR, Ludhiana, Maruteru, Mandya and Moncompu respectively. In all the six locations sheath blight pathogen *R. solani* was artificially inoculated at tillering stage (45-55 DAT) to ensure a very high disease pressure. To avoid the disease occurrence at control plot propiconazole @ 1 ml/l was sprayed. At all the test locations disease severity was recorded and calculated the Percent Disease Index (PDI) for the entire plant population in a block and grain yield was measured as Kg/ha.

Across the test locations, the control treatment – T4, where no artificial inoculation of sheath blight pathogen was followed, the PDI was varied between 2.0 (IIRR) to 23.10% (Moncompu). In the treatment T1, where all the hills per square meter were inoculated, PDI was very high at Gangavathi (82.12%), Maruteru (82.67%), IIRR (75.66%), and Ludhiana (63.50%) and it was moderate at Moncompu (48.43%). The treatment - T2, where in alternate plants inoculated (50% plants) were recorded high PDI at Gangavathi (62.58%) and Maruteru (61.33%) and IIRR (56.10%); moderate at Moncompu (37.77%) and Ludhiana (31.37%). In the T3 treatment, PDI was high at Maruteru (55.56%); moderate at Gangavathi (49.89%), IIRR (40.46%); low at Moncompu (28.66%) and Ludhiana (21.06%). Finally, in the un-inoculated treatment (T4) the natural occurrence of disease was very low at Gangavathi (8.05), IIRR (2.0), Ludhiana (0.21%) and Maruteru (0.0%) except at Moncompu (23.10%). Among all the four treatments, the mean Percent Disease Index was very high (68.53%) at 100% diseased block (T1) followed by 50% diseased block (T2) (46.93%) and 33% diseased block (T3) (36.51%) and 7.36% in T4 treatment. The mean percent yield reduction over control (PDR) showed a yield reduction of 46.18% in 100% diseased block (T1), 31.57% in 50% diseased block (T2), 14.80% in 30% diseased block (T3) and 0% in naturally diseased block (T4). At Gangavathi, 82.12% PDI resulted in the 48.7% yield reduction whereas at Mandya 58.8% PDI resulted in a 77.06% yield reduction. All the treatments reduced the grain yield based on the population disease severity in the respective treatments. Results from the present study revealed that increase of sheath blight severity reduced the rice grain yield in the ratio of 2:1. Sheath blight disease severity and yield loss in rice shows strong negative correlation (Table 14.3).

Table 14.3: Impact of Sheath blight disease severity on rice grain yield, Kharif-2022

				Sheath	Blight				_
		GNV			LUD			MND	ı
T. No	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control
T1	82.12 (65.02)	3330	48.70	63.50 (52.82)	4466	37.73	58.80 (50.10)	1279	77.06
T2	62.58 (52.30)	4361	32.82	31.37 (34.04)	5254	26.74	32.40 (34.61)	2741	50.85
Т3	49.89 (44.92)	5675	12.59	21.06 (27.29)	6214	13.36	23.40 (28.87)	4870	12.67
T4	8.05 (16.35)	6492	0.00	0.21 (4.42)	7172	0.00	10.80 (19.12)	5577	0.00
C.V (%)	6.05	9.80		4.36	3.61		6.68	7.50	
LSD @ 5% (P= 0.05)	3.73	670.10		1.78	287.61		3.05	373.65	
Transformation	AT			AT			AT		

(PDI- Percent disease index; Figures in the parenthesis indicates Arc sine transformed means)

(Conti.) Table 14.3: Impact of Sheath blight disease severity on rice grain yield, Kharif-2022

					Sheath 1	Blight					
		MTU	J		MNO	7		IIRR	2		Mean
T. No	PDI	Yield (Kg/ha)	% yield reduction over control		Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	% yield reduction over control
T1	82.67 (65.55)	3020	28.94	48.43 (44.04)	4008	33.04	75.66 (60.52)	2390	51.61	68.53	46.18
T2	61.33 (51.55)	3210	24.47	37.77 (37.87)	4511	24.62	56.10 (48.50)	3461	29.93	46.93	31.57
Т3	55.56 (48.17)	3760	11.53	28.66 (32.28)	4782	20.10	40.46 (39.62)	4022	18.56	36.51	14.80
T4	0.00 (4.05)	4250	0.00	23.10 (28.36)	5985	0.00	2.00 (8.13)	4938	0.00	7.36	0.00
C.V (%)	4.46	16.01		18.36	9.03		7.71	5.45			
LSD @ 5% (P= 0.05)	2.60	785.23		9.02	600.04		2.67	127.52			
Transformation	AT			AT			AT				

(PDI – Percent Disease Index; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Treatment details:

- T1 Inoculation of all the plants/hills (disease intensity is more than 50%)
- T2 Inoculation of alternate plants/ hills (disease intensity is 30-50%)
- T3 Inoculation one in every three plants/hills (disease intensity is below 30%)
- T3 Un-inoculated + fungicide treated control plot

Bacterial blight: Yield loss trial on bacterial blight was conducted at five locations viz., Maruteru, Moncompu, Pantnagar, Pattambi and IIRR. The trial was conducted with three treatments, *viz.*, artificial inoculation of *Xoo* of all the plants/hills (T1), inoculation of alternate plants/ hills (T2) and inoculation one in every three plants/ hills (T3) and uninoculated control (T4) along with 5 replications. Highly susceptible varieties *viz.*, TN1 was selected at IIRR and Pantnagar, Uma at Moncompu, MTU 2077 at Maruteru and Jyothi at Pattambi to conduct the trial.

In all the locations, *Xoo* was inoculated at the tillering stage and disease was recorded as percent disease index (PDI). Results revealed that across the locations, very high to high PDI recorded at Pantnagar (95.81%) followed by Pattambi (94.00%), Maruteru (75.48%), Moncompu (68.67%) and IIRR (48.29%). Though the pathogen was not inoculated in control treatment (T4), high incidence of BB was recorded at Maruteru (52.04%). Among the locations, at Pantnagar, highest yield reduction of 47.3% was recorded due to 95.81% PDI. Whereas at Moncompu, highest PDI of 68.67% resulted in the less grain yield reduction of 12.36% only. At IIRR, PDI was varied from 48.29% to 20.28% and the yield reduction was also varied from 24.14% to 20.69%. To conclude, across the locations the bacterial blight mean PDI of 76.45%, 56.64%, 45.49% and 16.43% resulted in the grain yield reduction of 23.26%, 16.36%, 15.84% and 0% respectively (Table 14.4).

Table 14.4: Impact of bacterial blight disease severity on grain yield - Kharif' 2022

				Bacteri	al Blight						
		MTU			MNC			PNT			
T. No	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control		
T1	75.48 (60.63)	4380	8.06	68.67 (56.08)	4635	12.36	95.81 (78.45)	3320	47.30		
T2	66.34 (54.53)	4520	5.12	40.67 (39.84)	4472	15.45	76.61 (61.09)	4580	27.30		
Т3	55.6 (48.20)	4650	2.39	22.22 (27.86)	4317	18.37	56.12 (48.50)	5240	16.83		
T4	52.04 (46.15)	4764	0.00	9.56 (17.18)	5289	0.00	11.93 (20.12)	6300	0.00		
C.V (%)	6.60	16.16		27.82	15.08		2.89	10.66			
LSD @ 5% (P= 0.05)	4.77	1019.7		13.51	972.34		2.07	713.82			
Transformation	AT			AT			AT				

(PDI – Percent Disease Index; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

(Conti.) Table 14.4: Impact of bacterial blight disease severity on grain yield - Kharif' 2022

		•]	Bacterial E	Blight	· U		
		PTB			IIRR		M	ean
T. No	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	Yield (Kg/ha)	% yield reduction over control	PDI	% yield reduction over control
T1	94.00 (76.30)	2600	24.42	48.29 (43.99)	6600	24.14	76.45	23.26
Т2	78.92 (62.70)	2760	19.77	20.65 (26.94)	7467	14.18	56.64	16.36
Т3	73.22 (58.83)	2720	20.93	20.28 (26.73)	6900	20.69	45.49	15.84
T4	8.61 (17.95)	3440	0.00	0 (4.05)	8700	0.00	16.43	0.00
C.V (%)	5.98	6.76		10.83	16.32			
LSD @ 5% (P= 0.05)	4.45	268.33		5.50	2418.9			
Transformation	AT			AT				

(PDI – Percent Disease Index; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

Treatment details:

- T1 Inoculation of all the plants/hills (disease intensity is more than 50%)
- T2 Inoculation of alternate plants/ hills (disease intensity is 30-50%)
- T3 Inoculation one in every three plants/hills (disease intensity is below 30%)
- T3 Un-inoculated + antibiotic treated control plot

TRIAL No: 15. SPCIAL TRIAL ON SCREENING FOR FALSE SMUT RESISTANCE UNDER ARTIFICIAL SCREENING

This trial was formulated to identify the promising donors against false smut disease under artificial disease pressure. The trial was proposed at 6 locations viz., Chinsurah, Gudalur, IIRR, Ludhiana, Masodha (Faizabad) and Varanasi to screen the Advanced Variety Trials (NSN-1). However, the trial was conducted at two locations *viz.*, IIRR and Gudalur.

At IIRR, 200 NSN-I entries were screened artificially. *Ustilaginoidea virens* conidial suspension ($2x\ 10^5$) was used and injection method of inoculation was adopted as described in the technical programme 2022. Data were scored in terms of number of smut balls per panicle. Among the 200 entries IET # 29421, 30066, 29284 and CO-51 recorded more than 30 smut balls per panicle. Few entries viz., IET # 30088, 30097, 29268, 29246,30020, 30022, 30000, 30006, 29358 and 29360 showed tolerance against false smut disease. However, these entries should be screened for two more seasons to confirm the tolerance. At Gudalur the NSN-1 entries (338) were screened under natural conditions. Disease was recorded in terms of Number of Hills free from smut Balls; Number of Hills with 1 smut ball; Number of Hills with 2 smut balls and Number of Hills with \geq 3 smut balls. Among the tested entries, IET # 30022, 30032, 29422, 29284, 29808 and 29807 were recorded less than 3 smut balls.

TRIAL No.16: SPCIAL TRIAL ON SCREENING FOR BROWN SPOT RESISTANCE UNDER ARTIFICIAL SCREENING

The aim of this trial is to introduce/expand artificial inoculation method of screening against emerging diseases like brown spot in different centres and to identify promising cultures in Advanced Variety Trials (NSN-1) under artificial method of screening. During 2022, the trial was proposed at five centres *viz.*, Chinsurah, Gudalur, Masodha, IIRR and Ludhiana; however, the trial was conducted at four centres except at Masodha.

The National Screening Nursery (NSN-1) comprised of 338 entries evaluated under artificial inoculation conditions at Chinsurah, Gudalur, IIRR and Ludhiana. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in the Table 16.1A. The disease pressure was high (LSI 6-7) at IIRR (7.0), Ludhiana (6.6) and Gudalur (6.0); while it was moderate (LSI 4-6) at Chinsurah (4.2). The selection of promising entries was done based on the data of all the four locations and presented in Table 16.1B. None of the entry was found resistant (SI≤3) against brown spot disease under NSN-1 based on the selection from four locations; however, a few promising entries with low SI (<4.8) and high PI included IET# 30106, 29539, 30827, 30634, 30093, 30826, 30165, 30176, 28982, 29574, 30830, 30828, 30760, 30824, 30109 and 30178.

Table 16.1A: Location severity index(LSI) and frequency distribution of brown spot scores

of NSN-1, Kharif 2022 under artificial inoculation condition.

Carro		Location/Freque	ncy of score (0-9)	
Score	CHN	GDL	IIRR	LDN
0	0	0	0	0
1	0	0	0	0
2	57	0	0	0
3	85	2	0	11
4	56	35	11	0
5	78	85	54	77
6	24	101	55	0
7	21	81	59	216
8	17	34	94	0
9	0	0	53	33
Total	338	338	326	337
LSI	4.2	6.0	7.0	6.6
Screening	A	A	A	A

(LSI-Location Severity Index; A-Artificial)

Table 16.1B: Promising entries with low susceptibility index (<=4.8) and high PI in NSN-1 to brown spot, *Kharif* 2022 under artificial inoculation condition

			Locati	on/Freque	ncy of scor	re (0-9)				*		*
P.No.	Br.No	IET No.	CHN	GDL	IIRR	LDN	SI	Total	<=3*	PI (<-3)*:	<= 2 *	PI (<-5)**
55	4906	30106	2	7	5	3	4.3	4	2	50	3	75
109	4804	29539	2	7	5	3	4.3	4	2	50	3	75
292	4318	30827	3	4	5	5	4.3	4	1	25	4	100
296	3528	30634	3	5	4	5	4.3	4	1	25	4	100
59	4910	30093	2	6	4	5	4.3	4	1	25	3	75
290	4316	30826	3	5	5	5	4.5	4	1	25	4	100
278	5309	30165	2	5	6	5	4.5	4	1	25	3	75
274	5305	30176	4	5	4	5	4.5	4	0	0	4	100
103	3714	28982	2	5	-	7	4.7	3	1	33	2	67
256	6004	29574	3	5	6	5	4.8	4	1	25	3	75
283	5315	30830	3	5	6	5	4.8	4	1	25	3	75
293	4319	30828	3	5	6	5	4.8	4	1	25	3	75
251	5820	30760	2	6	6	5	4.8	4	1	25	2	50
287	4313	30824	2	6	6	5	4.8	4	1	25	2	50
70	4921	30109	4	5	5	5	4.8	4	0	0	4	100
273	5304	30178	5	4	5	5	4.8	4	0	0	4	100
333	C	o-39	3	8	8	7	6.5	4	1	25	1	25
329	Vikr	amarya	7	5	8	7	6.8	4	0	0	1	25
	LSI		4.2	6.0	7.0	6.6						

(SI-Susceptibility Index; *No. of locations where the entry has scored \leq 5 and \leq 3; **Promising index (PI) based on no. of locations where the entry had scored \leq 3 and \leq 5)

V. Report of AICRPR - Rainfed Trials - 2022-2023

Forty-four NSN-I (EDS-Early Direct Seeded=22 lines, RSL-Rainfed Shallow Lowland=12 lines, SDW-Semi Deep Water=10 lines) and 152 NSN-II seeds (EDS-Early Direct Seeded=56 lines, SDW-Semi Deep Water=29 lines, RSL-Rain fed Shallow Lowland=54 lines, DW-Deep Water=13 lines) were sent to 18 different centres on 16th May 2022 by speed post. Thirteen centres sent the report and 5 centres namely (i) Agricultural Research Station, Mugad, (ii) Agricultural & Horticulture Research Station, Ponnampet (heavy rain damaged the experiment), (iii) Rice Research Station, Chinsurah (Plant Pathologist got transferred), (iv)CRURRS (ICAR-NRRI), Hazaribag (no expt was conducted) and (v) Birsa Agril. Univ., Kanke, Ranchi (Trial failed) did not send the report. Trials for bacterial blight (BB) and sheath blight (ShB) were conducted by 7 centres, 8 centres conducted trial for blast (Bl), brown spot (BS) trial was conducted by 5 centres and sheath rot (ShR) was conducted by 4 centres.

Considering the SI value SI≤5 IET nos 29026, 29032, 29048 (R), 30330, 29060 (R), 30336, 30351 were promising for Blast; 27538(BRR 2110 (R), 30367 (BRR 2010), 30356(CR 3428-18-2-1-1), 30410 (CR 2532-9-21-35-3), 31288(CR 4169-200-52-1), 29122(OR 2752),28296 (R), 30414(OR 2767), 29031, 29026, 29032, 30336 for BB; 30367 (BRR 2010),30356 (CR 3428-18-2-1-1), 31288(CR 4169-200-52-1),29121 (CR 3838 -2-2-1-1-2), 29122(OR2752), 29036 (R), 29048 (R), 29047 (R), 30336, 29052 (R), 30334, 28835 (R), 30438 for BS; 27538 (BRR 2110 (R),30367 (BRR 2010), 29121 (CR 3838 -2-2-1-1-2), 29122(OR 2752), 29031, 29026, 29032, 29039 (R), 29047 (R), 30330, 30336, 29038 (R), 29052 (R), 30328, 30351, 30437 for ShB among all the NSN-I Trials. Swarna Sub 1 (NC), Sarala (RP), Gayatri (RP), CR Dhan 411 (RP), CR Dhan 801 (Yield check), CR Dhan 506 (NC), Varshadhan (RP), Sahbhagidhan (NC), Anjali (ZC for all zones & RP), Vandana (NC & RP), IR 64 (Sensitive check) were used as checks. 30336 (BS+Bl+ShB+BB); 29026, 29032, (Bl+BB+ShB); 30367, 29122, (BB+BS+ShB); 29048 (Bl+BS); 30330 (Bl+ShB); 30356,31288 (BB+BS); 27538, 28296, 29031, 29026, 29032 (BB+ShB); 29121,29047, 29052(BS+ShB) were observed to be multiple disease resistance lines.

When NSN-II lines were considered 31154, 31170, 31171, 31172, 31177, 31179, 31186, 31234, 31235, 31241, 31246, 31247, 31248, 31251, 31252, 31253, 30423 (S), 31254, 31266, 31275, 28320(R), 31281 were promising for Blast; 31163, 31165, 31167, 31172, 31173, 31174, 31177, 31187, 31190, 31191, 31192, 31193, 31194, 31196, 31198, 31200, 31203, 31206, 31207, 31209, 31210, 31212, 31214, 31215, 31216, 31217, 31218, 31220, 31222, 31223, 31224, 31225, 31226, 31227, 31228, 31232, 31233, 31234, 31235, 31236, 31237, 31239, 31240, 31242, 31243, 31246, 31251, 30423(S), 31254, 31255, 31256, 31257, 31258, 31259, 31260, 31261, 31263, 31265, 31267, 31269, 31270, 31271, 31273, 31274, 31278, 31279, 31280, 26741(R), 31283 for BB; 31154, 31159, 31160, 31161, 31162, 31163, 31164, 31166, 31170, 31171, 31175, 31176, 31177, 31178, 31179, 31181, 31183, 31194, 31195, 31196, 31202,31207, 31209, 31210, 31213, 31216, 31218, 31219, 31220,31221, 31222, 31224, 31225, 31228, 31229, 31230, 31231, 31232, 31233, 31234, 31235, 31238, 31239, 31240,31245, 31246, 31249, 31251, 31252,30423 (S), 31255, 31258, 31260, 31263, 31264, 31265, 31266, 31267, 31268, 31269, 31270, 31271, 31272, 31273, 31275, 31276, 31277, 31280,26741(R), 28319 (R), 28318 (R),28320 (R), 31282, 30436 (R),31285 for BS and 31154, 31155, 31156, 31159, 31160, 31161, 31162, 31164, 31165, 31166, 31167, 31169, 31170, 31172, 31175, 31178, 31179, 31180, 31181, 31184, 31185, 31189, 31190, 31191, 31192, 31194, 31198, 31199, 31202, 31205, 31206, 31207, 31209, 31210, 31211, 31212, 31213, 31214, 31215, 31216, 31217, 31218, 31219, 31220, 31222, 31223, 31224, 31225, 31226, 31227, 31228, 31230, 31231, 31233, 31235, 31237, 31238, 31239, 31240, 31243, 31244, 31249,

31252, 31252, 31258, 31259, 31261, 31262, 31263, 31264, 31265, 31266, 31267, 31268, 31269, 31270, 31272, 31273, 31274, 31275, 31276, 31278, 31279, 31280, 26741(R), 28319 (R), 28320 (R), 31281, 31282, 30436 (R), 31283, 31284, 31285 for ShB. For other diseases data was not considered. The LSI for Maruteru for BB was too high (more than 8.5) so not considered. Similarly, the LSI of Gerua was too low so rejected.

VI. Report of AICRPR - Basmati Trials -2022-2023

Pan India 11 AICRIP Centres (Modipuram, Chatha, Karnal, Kaul, Khudwani, Ludhiana, Malan/Palampur, Meerut, Nagina, New Delhi & Pantnagar) were involved in basmati rice (Pathology) trials. The seed material along with detail plan & directives of the AICRIP-BT trials were dispatched well in advance to each Centre from the Coordinating Centre (AICRIP-BT) at Division of Plant Pathology, ICAR-IARI, New Delhi. This year out of 11 Centres, 5 centres, namely, Kaul, Ludhiana, New Delhi, Palampur & Pantnagar conducted the trials. The NSN1-BT trial comprises 29 entries which includes code 1801 to 1829. The data of bacterial leaf blight (BB) from four locations under artificial inoculation (through leaf tip clipping method) were analyzed. The centre Kaul has highest LSI (8.59) followed by Delhi (8.10), Ludhiana (6.38) & Pantnagar (6.24) out of 9 disease score.

The promising entries for BB resistance from four locations include 1801, 1822 (from Pant Nagar), 1809, 1815 (from Punjab: Xoo strain PbXo7), 1818, 1819 (from Punjab: Xoo strain Pb Xo8). The data of sheath blight from four locations under artificial inoculation were analyzed. The centres Kaul as well as Delhi showed highest LSI (8.10) followed by Ludhiana (7.06) & Pantnagar (5.96) out of 9 disease score. Only entry no. 1824 was found to be resistance (3.0 out of 9.0 scale) in Pantnagar centre. The data for leaf blast as received from two hot spot locations under artificial inoculation indicated that Palampur has got LSI for leaf blast 5.66 while it is 5.55 in Delhi out of 9 disease score. In both the centres, the four entries, namely 1819, 1820, 1823, 1824 were found to be promising for leaf blast resistance (with score 1.0 out of 9.0). The report was compiled & presented at pre-Workshop AICRIP held through virtual mode held from 10-11 April, 2023 by Dr. Kalyan K Mondal, Principal Scientist & National Coordinator (AICRIP-BT_Plant Pathology), ICAR-IARI, New Delhi. The Co-operators were highly acknowledged for their contribution through conducting the AICRIP-BT trials and submitting their reports timely.

Annexure I
Weather conditions at test locations where Plant Pathology Coordinated Trials were conducted, *Kharif-*2022

S. No	Location/ D	etails			Weathe	r data from	May-2022	to Januar	ry-2023		
1	Aduthurai		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		32.0	23.0	77.5	124.0	109.3	179.8	184.2	153.4	6.8
	Rainfall (mm)		4	3	4	5	7	7	10	7	1
	Temp. (°C)	Maximum	35.6	35.9	35.0	35.0	34.6	32.4	30.1	29.7	29.8
		Minimum	23.3	23.0	22.4	21.9	22.0	21.6	20.2	22.0	19.9
	RH (%)	Morning	86.0	84.3	86.3	89.2	87.8	92.5	94.8	92.9	94.8
		Evening	60.0	59.4	61.5	64.0	63.6	71.2	79.0	77.9	68.2
2	Almora		May	June	July	August	Sep	Oct	Nov	Dec	Jan
				We	eather data	not available	2				
3	Arundhutinagar		May	June	July	August	Sep	Oct	Nov	Dec	Jan
				We	eather data	not available	e				
4	Bankura		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		13	11	12	18	15	6	0	0	-
	Rainfall (mm)		13.23	101.09	44.9	98.7	135.5	54	0	0	-
	Temp. (°C)	Maximum	35.72	35.45	32.15	33.23	34.32	32.06	30.16	29.18	-
		Minimum	24.19	25.2	28.27	27.19	27.77	25.35	19.32	14.27	-
	RH (%)	Morning	72.16	76.76	75.79	80.67	77.63	77.87	63.65	57.84	-
		Evening	-	-	ı	-	-	ı	-	-	-
5	Chatha		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	4	15	8	9	2	3	1	-
	Rainfall (mm)		-	91.8	460.4	339	137.6	48.2	24.8	9.6	-
	Temp. (°C)	Maximum	-	38.9	33.5	34.1	33.4	31.2	25.8	21	-
		Minimum	-	24.3	25.8	26	23.6	17.3	10	5.7	-
	RH (%)	Morning	-	56	88	85	88	85	90	93	-
		Evening	-	33	72	67	62	48	48	53	-
6	Chinsurah		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		11	17	22	18	11	6	Nil	-	-
	Rainfall (mm)		133.1	194	200	255.8	235.9	67.1	Nil	-	-
	Temp. (°C)	Maximum	33.92	35.1	34.71	33.92	33.78	32.3	29.52	-	-
		Minimum	23.35	24.58	24.48	24.15	23.6	21.22	13.7	-	-
7	Chiplima		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4	4	14	16	8	6	0	0	-
	Rainfall (mm)		64.6	51.6	444.4	344.4	257.6	68.4	0	0	-
	Temp. (°C)	Maximum	38.4	38.3	32	32.1	33.2	31.9	30.1	29.2	-
		Minimum	25.1	25.9	25.2	24.9	24.6	21.1	14.8	12	-
	RH (%)	Morning	77.8	90.9	92.2	92.4	92	89.5	90.2	92	-
		Evening	48.5	85.6	79.1	88.7	82	68.9	57.9	47.2	-
8	Coimbatore		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		3	1	13	7	2	8	7	6	-

S. No	Location/ D	etails			Weathe	r data from	May-2022	to Januar	y-2023		
	Rainfall (mm)		0.61	0.32	2.8	4.23	1.08	3	4.6	3.32	-
	Temp. (°C)	Maximum	32.97	32.98	30.09	30.49	31.24	30.62	29.35	28.93	-
		Minimum	23.87	23.71	23.09	22.98	22.57	22.4	21.79	20.64	-
	RH (%)	Morning	81.65	81.23	83.06	84.42	76.61	84.97	85.63	85.03	-
		Evening	55.58	51.07	61.35	61.13	54.43	57.61	58.1	53.39	-
9	Cuttack		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	7	21	20	10	7	0	0	-
	Rainfall (mm)		-	105	415.7	297.5	175.8	177.1	0	0	-
	Temp. (°C)	Maximum	-	35.5	31.7	32	32.2	31	30.4	28.9	-
		Minimum	-	27.6	26.5	26.4	26.5	24.6	19.9	16.7	-
	RH (%)	Morning	-	92	95.3	94.2	94.3	94.6	91.6	90.6	-
		Evening	-	59.9	80	74.8	72.7	69.9	53	50.2	-
10	Faizabad (Masodha)		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	2.0	8.0	9.0	10.0	5.0	0.0	-	-
	Rainfall (mm)		-	34.8	152.9	127.4	203.4	212.0	0.0	-	-
	Temp. (°C)	Maximum	-	39.6	34.9	33.1	32.7	30.8	28.2	-	-
		Minimum	-	28.0	26.4	25.6	24.7	19.2	12.4	-	-
	RH (%)	Morning	-	74.2	80.0	90.5	90.2	87.3	81.9	-	-
		Evening	-	45.7	64.2	73.9	73.1	69.8	59.4	-	-
11	Gangavati		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		7.00	13.00	20.00	15.00	16.00	11.00	1.00	4.00	-
	Rainfall (mm)		2.11	1.95	2.73	4.71	4.07	3.53	0.18	1.29	-
	Temp. (°C)	Maximum	36.24	34.45	30.93	30.75	30.77	31.09	30.31	30.31	-
		Minimum	25.07	24.27	23.69	23.45	22.86	21.22	18.27	18.21	-
	RH (%)	Morning	87.19	90.00	95.23	95.16	98.70	99.71	18.27	98.23	-
		Evening	38.26	44.17	60.77	64.26	65.20	99.71	45.80	43.19	-
12	Gerua		May	June	July	August	Sep	Oct	Nov	Dec	Jan
				We	eather data	not available	2	•			
13	Ghaghraghat		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		2	3	6	6	10	7	Nil	Nil	-
	Rainfall (mm)		19	32.2	150.6	131.8	270.5	318.8	Nil	Nil	-
	Temp. (°C)	Maximum	41.87	38.93	34.23	32.83	31.43	29.32	28.0	22.87	-
		Minimum	25.43	27.6	25.71	26.94	26.03	22.35	15.63	9.16	-
14	Gorakhpur		May	June	July	August	Sep	Oct	Nov	Dec	Jan
		•		We	eather data	not available		-			
15	Gudalur		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		16	18	23	22	14	21	7	2	-
	Rainfall (mm)		352	828	720	610	286	226	31	18	-
_	Temp. (°C)	Maximum	28.2	23	21.9	22.3	25.7	26	25.6	25.2	-
		Minimum	18.7	16.8	17	16.8	17.2	16.5	15.1	14.3	-

S. No	Location/ D	etails			Weather	r data from	May-2022	to Januar	ry-2023		
	RH (%)	Morning	92.8	98.1	98.3	99.7	95.3	93.6	91.2	88,7	-
		Evening	81	91.3	92.5	92.1	78.5	74.7	68.2	62.2	-
16	Hazaribagh		May	June	July	August	Sep	Oct	Nov	Dec	Jan
				We	eather data	not available	e				•
17	IIRR		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	18	27	17	21	17	0	3	0
	Rainfall (mm)		-	62.52	195.69	34.40	129.38	66.75	0.00	16.50	0.00
	Temp. (°C)	Maximum	-	31.08	25.88	26.06	26.37	24.35	22.97	22.82	21.78
		Minimum	-	23.94	21.51	22.45	22.30	19.78	17.87	18.07	15.89
	RH (%)	Morning	-	86	92	89	90	89	83	89	84.9
		Evening	-	51	73	67	70	59	42	45	38.2
18	Imphal		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		18	13	10	11	8	8	1	1	0
	Rainfall (mm)		382.9	286.2	148.4	94.8	98.6	146.3	5.4	18.8	0
	Temp. (°C)	Maximum	27.8	28.7	31	30	30.5	28.9	27.2	23.7	23.6
		Minimum	20	22	22.9	22.4	23.9	18.6	11.9	8.9	5.5
	RH (%)	Morning	87.9	87.6	80.9	87.1	88.3	88.1	90.8	95.3	92.5
		Evening	68.5	69.6	63.5	66.5	62.4	59.3	44.3	47.7	35.3
19	Jagadalpur		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4	7	25	20	14	7	0	0	0
	Rainfall (mm)		84.1	144.8	582.4	679.9	452.4	88.8	0.0	0.0	0.0
	Temp. (°C)	Maximum	36.1	33.5	28.1	29.3	29.9	29.6	28.9	29.7	29.6
		Minimum	23.2	23.2	22.0	21.8	21.7	18.7	12.9	12.5	10.8
	RH (%)	Morning	74.8	74.8	92.7	92.6	92.6	91.9	88.9	89.2	87
		Evening	43.7	43.7	79.5	74.6	71.7	60.3	40.3	38.9	32
20	Jagtial		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4.00	5.00	23.00	11.00	10.00	4.00	0.00	0.00	-
	Rainfall (mm)		48.40	202.00	914.20	164.60	231.90	28.40	0.00	0.00	-
	Temp. (°C)	Maximum	39.58	36.59	29.53	31.78	31.05	31.58	31.21	12.70	-
		Minimum	25.83	25.22	22.78	23.88	22.84	20.11	14.79	6.79	-
	RH (%)	Morning	71.68	76.97	91.71	86.77	90.97	90.39	85.30	36.16	-
		Evening	44.81	47.53	76.77	71.29	75.57	62.16	36.67	18.19	-
21	Karaikal		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		2	1	5	8	7	8	14	12	2
	Rainfall (mm)		21	10.8	57.6	160.5	130.4	164.5	419.6	214.3	21
	Temp. (°C)	Maximum	36.6	36.7	35.8	34.4	34.6	32.2	30	29.3	36.6
	- , ,	Minimum	26.5	26.6	26.2	25.3	25.4	24.9	23.2	23	26.5
	RH (%)	Morning	79	75	78	82	84	89	92	92	79
	` `	Evening	52	47	50	58	57	66	72	75	52
22	Karjat		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	13	28	24	23	10	0	-	-

S. No	Location/ D	etails			Weathe	r data from	May-2022	to Januar	y-2023		
	Rainfall (mm)		0	191.4	2023.6	713.4	660.2	165.6	0	-	-
	Temp. (°C)	Maximum	42.4	39	33.5	33.8	34	34.8	35.2	-	-
		Minimum	22.8	22.8	17.4	21.8	19.6	16.2	14.2	-	-
	RH (%)	Morning	78.1	91.3	91.5	92.2	90.8	90	88.5	-	-
		Evening	44.9	78.4	83.2	78.5	82.1	57	47	-	-
23	Kaul		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		3	3	8	1	6	2	0	0	NA
	Rainfall (mm)		71.9	27.9	287.8	31.7	243.1	8.9	0	0	NA
	Temp. (°C)	Maximum	44.5	44.7	37	35.5	35.5	34	31.5	26	NA
		Minimum	18.5	21	23.8	24.5	21.5	13.2	6	5.2	NA
	RH (%)	Morning	83	83	91	93	96	94	94	96	NA
		Evening	83	67	83	73	75	56	52	64	NA
24	Khudwani		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		9	7	15	9	6	2	8	-	-
	Rainfall (mm)		65.8	104.6	177.8	82	20	40	98.6	-	-
	Temp. (°C)	Maximum	25.63	27.26	28.88	28.96	28.7	22.6	13.72	-	-
		Minimum	10.55	13.33	18.83	17.38	13.15	5.19	1.8	-	-
	RH (%)	Morning	72.19	71.2	83.48	83.77	78.73	86.29	92.28	-	-
		Evening	48.87	61.35	61.54	61.48	47.1	53.61	74.56	-	-
25	Lonavala		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	8	26	30	23	9	2	1	-
	Rainfall (mm)		0	203.1	2513.3	1528.5	771.1	190.8	23.6	9.2	-
	Temp. (°C)	Maximum	37.46	31.125	26.275	27.42	28.6	27.625	30.12	30.475	-
		Minimum	20.62	19.55	18	18.16	15.975	17.85	11.14	11.5	-
	RH (%)	Morning	83.7	89.425	90.775	92.38	91.55	93.975	76.5	63.6	-
		Evening	78.6	84.35	91	82.24	86.5	84.8	61.98	62.325	-
26	Ludhiana		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		2	4	10	5	4	2	0	-	-
	Rainfall (mm)		25.6	70.6	323.8	59.2	125.7	5.4	0	-	-
	Temp. (°C)	Maximum	39.2	38.7	33.5	33.9	30.1	31.3	26.8	-	-
		Minimum	26.1	27	27.3	27.3	23	18.8	12.2	-	-
	RH (%)	Morning	51	59	81	81	95	87	89	-	-
		Evening	27	36	66	63	69	43	36	-	-
27	Malan		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	6	12	9	14	1	0	-	-
	Rainfall (mm)		-	230.8	486.1	260.6	179.6	8.4	0	-	-
	Temp. (°C)	Maximum	-	32.4	30.1	28.6	27.4	25.2	26.6	-	-
		Minimum	-	18	20.1	21.4	20	14.9	13.9	-	-
	RH (%)	Morning	-	81.6	78.4	77.7	75.5	76.5	76.1	-	-
		Evening	-	74.4	72.4	71.7	68.5	71.1	70.6	-	-
28	Mandya		May	June	July	August	Sep	Oct	Nov	Dec	Jan

S. No	Location/ D	etails			Weather	r data from	May-2022	to Januar	y-2023		
	Rainy days (No.)		16	6	10	13	6	12	2	3	-
	Rainfall (mm)		285.3	234.5	149	447.1	102.4	371.4	11	30.4	-
	Temp. (°C)	Maximum	30.5	31.2	28.5	29	29.9	29.7	20.5	29.2	-
		Minimum	21.1	20.8	18.2	19.6	19.7	19.4	14.1	16.8	-
	RH (%)	Morning	89.2	89	88.1	88.7	89	90	93	103	-
		Evening	65.8	61	72.8	66.4	69	68	77	62.2	-
29	Maruteru		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	10	14	11	14	12	4	2	-
	Rainfall (mm)		-	163.5	226.6	158.8	205.4	224.2	34.6	68.8	-
	Temp. (°C)	Maximum	-	34.95	30.4	31.65	31.4	31.26	29.83	29.26	-
	2 , ,	Minimum	-	27.65	26.9	27.02	26.57	26.29	22.93	21.23	-
	RH (%)	Morning	-	84.63	77.29	89.16	86.4	83.4	82.5	88.81	-
		Evening	-	52.52	55.48	73.84	74.5	78.3	52.7	58.71	-
30	Moncompu		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		15	16	17	16	14	15	10	5	-
	Rainfall (mm)		416.3	430.2	237.5	510.8	134.6	212.3	286.6	165.2	-
	Temp. (°C)	Maximum	32.27	31.88	30.39	30.19	31.35	32.07	32.9	32.66	-
	- , ,	Minimum	25.09	24.44	24.23	23.99	24.81	24.3	24.18	23.7	-
	RH (%)	Morning	83.548	83.366	84.096	86.193	78.366	79.02	86.76	86.34	-
		Evening	75.483	82.166	84.967	82.516	85.133	77.9	87.1	87.68	-
31	Mugad		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		3.00	9.00	19.00	15.00	10.00	7.00	1.00	-	-
	Rainfall (mm)		111.00	102.40	404.40	155.00	169.00	154.60	5.40	2.00	-
	Temp. (°C)	Maximum	32.10	29.90	26.60	27.40	28.70	28.90	29.60	29.60	-
		Minimum	21.40	21.40	20.50	20.30	20.00	18.60	16.50	15.50	-
	RH (%)	Morning	84.00	85.70	91.70	90.70	89.80	85.60	72.80	76.90	-
		Evening	61.50	76.50	82.50	82.40	74.20	67.80	45.60	44.30	-
32	Navsari		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	11	20	16	15	3	0	0	-
	Rainfall (mm)		0	164	995	527	660	74	0	0	-
	Temp. (°C)	Maximum	34.9	33.3	29.4	30.07	31.04	33.6	33.7	29.3	-
		Minimum	26.8	25.5	24.3	24	23.7	21.3	16.9	15.6	-
	RH (%)	Morning	85	91	96	93	96	87	82	76	-
		Evening	62	68	87	78	75	58	33	36	-
33	Nawagam		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	2	26	12	3	2	0	0	-
	Rainfall (mm)		0	48.0	677.6	207.0	95.4	35.7	0	0	-
	Temp. (°C)	Maximum	42.1	39.5	32.2	31.8	33.3	34	32.6	30.4	-
	- ' '	Minimum	25.8	26.5	25.7	25.6	25	20.8	20.8	15	-
	RH (%)	Morning	73	80	90	87	90	84	79	78	-
	` '	Evening	34	51	76	84	78	53	55	58	_

S. No	Location/ D	etails			Weathe	r data from	May-2022	to Januar	ry-2023		
34	Nellore		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4	3	9	4	4	5	12	5	4
	Rainfall (mm)		65.2	74.5	201.8	125.1	36.8	38.6	439.2	246	94.8
	Temp. (°C)	Maximum	34.4	35.3	31.7	32.7	32.4	30.5	27.6	27.7	26.4
		Minimum	23.9	27.8	25.3	25.5	24.7	23.8	21.8	21.4	21.7
	RH (%)	Morning	67.5	63.7	74.9	73.9	73.2	75.8	85.3	87.9	84.6
		Evening	58.2	53.2	62.6	60.9	60.4	69.3	75.7	80.5	74.1
35	New Delhi		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		5	2	13	8	9	3	0	0	-
	Rainfall (mm)		1.9	3	10.5	2.6	6.3	4.35	0	0	-
	Temp. (°C)	Maximum	39.8	40.4	35.1	34.1	31.6	31.6	28.05	22.4	-
		Minimum	24.8	26	26.1	25.5	24.5	19.96	14.38	16.69	-
	RH (%)	Morning	73.6	60.4	81.4	80.7	84.3	89.06	88.8	102.38	-
		Evening	36.1	40.4	69.1	67.6	69.6	55.48	46.2	46.61	-
36	Pantnagar		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		5	4	9	10	11	6	0	0	-
	Rainfall (mm)		45.5	104.8	174.8	182.1	401.9	294.3	0	0	-
	Temp. (°C)	Maximum	35.7	37.8	33.5	33.5	31.6	29.8	27.3	22.7	-
	2 , ,	Minimum	23.8	26.1	27.1	26	24.2	18.3	12.1	7.1	-
	RH (%)	Morning	66	71	82	87	89	88	90	93	-
	. ,	Evening	40	41	66	67	69	55	46	52	-
37	Patna		May	June	July	August	Sep	Oct	Nov	Dec	Jan
		1		We	eather data	not available	e	I	1		I
38	Pattambi		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		16	18	19	14	10	9	5	5	-
	Rainfall (mm)		320.9	231.9	631.4	408	231.5	92.1	43.1	71.8	-
	Temp. (°C)	Maximum	30.5	30.7	29.3	29.9	30.6	31.8	31.8	31.7	-
		Minimum	22.7	22.8	22.9	21.8	22.2	22.3	21.8	20.5	-
	RH (%)	Morning	91	94	94	94	91	90	91	91	-
		Evening	71	70	75	75	71	60.5	62	56	-
39	Ponnampet		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		17.0	13.0	24.0	21.0	13.0	10.0	0.0	0.0	22.2
	Rainfall (mm)		345.1	219.3	988.4	836.6	339.4	134.9	0.0	0.0	1.0
40	Pusa		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		8	6	11	11	16	7	0	0	-
	Rainfall (mm)		126	2.5	205.3	162.5	167.6	64.3	0	0	-
	Temp. (°C)	Maximum	33.6	34.6	34.5	33.6	32.6	32.1	29.3	24	-
	- , ,	Minimum	23	25.2	25.9	25.1	24.6	20.5	14.1	9.9	-
	RH (%)	Morning	86	88	87	91	94	95	96	99	-
	` ′	Evening	61	66	68	73	77	63	48	59	-
41	Raipur		May	June	July	August	Sep	Oct	Nov	Dec	Jan

S. No	Location/ D	etails			Weathe	r data from	May-2022	to Januar	·y-2023		
	Rainy days (No.)		-	-	-	-	-	-	-	-	-
	Rainfall (mm)		-	2.3	11.3	14.1	5.8	1.9	0	-	-
	Temp. (°C)	Maximum	-	39.27	31.6	31.4	31.5	31.2	29.9	-	-
		Minimum	-	26.8	25.3	25	24.7	21.5	13.82	-	-
	RH (%)	Morning	-	66.9	90.1	90.3	90	89	86.4	-	-
		Evening	-	39.1	74.8	70	71	55	32.93	-	-
42	Rajendranagar		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	5	19	9	12	10	0	0	0
	Rainfall (mm)		-	87.6	368.8	92.4	228.0	171.8	0.0	3.6	0.0
	Temp. (°C)	Maximum	-	35.4	28.7	30.0	30.0	29.6	29.4	29.2	30.0
		Minimum	-	24.7	22.5	22.9	22.5	19.8	15.9	15.9	14.1
	RH (%)	Morning	-	86	92	89	90	89	83	89	84.9
		Evening	-	51	73	67	70	59	42	45	38.2
43	Ranchi		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4	6	16	19	17	4.0	0	0	0
	Rainfall (mm)		36.5	99.0	280.8	790.8	528.6	83.0	0.0	0.0	0.0
	Temp. (°C)	Maximum	36.6	36.7	33.0	32.7	33.3	30.6	26.9	24.9	-
	romp. (c)	Minimum	24.8	25.9	24.0	24.1	24.7	20.9	9.2	5.7	_
	RH (%)	Morning	86.2	86.6	85.8	85.6	85.9	85.4	86.2	86.7	_
	101 (70)	Evening	69.5	69.5	69.6	66.9	69.9	69.8	69.4	69.2	-
44	Rewa	8	May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	8	14	18	9	4	0	-	-
	Rainfall (mm)		_	69.4	216.6	339.8	86.8	122.4	0	-	-
	Temp. (°C)	Maximum	-	39.42	34.56	32.2	32.47	31.83	29.5	-	-
		Minimum	-	26.61	25.65	24.87	24.33	18.88	12.62	-	-
	RH (%)	Morning	_	57.27	77.71	87.55	86.63	86.06	80.27	-	-
		Evening	-	38.13	59.81	69.94	71.3	57.58	39.53	-	-
45	Sabour		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		5	8	9	10	9	6	0	0	-
	Rainfall (mm)		68.6	161	43.6	77	48.4	134	0	0	-
	Temp. (°C)	Maximum	35.4	35.8	36	33.7	32.7	31.8	29.6	24.9	-
	2 , ,	Minimum	23.5	25.3	26.1	25.9	25.4	21.4	13.6	9	-
	RH (%)	Morning	82.3	84.9	85	87.2	89.8	92.5	95.5	96.1	-
		Evening	-	-	-	-	-	-	-	-	
46	Titabar		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		12	19	22	14	13	15	Nil	1	-
	Rainfall (mm)		2.5	7.8	10.6	6.6	4.7	7	Nil	0.2	-
	Temp. (°C)	Maximum	31	28.3	34.2	34	33.2	31.1	29.1	27.2	-
		Minimum	20	24.8	23.6	23.8	22.5	19.5	12.1	10.1	-

S. No	Location/ D	etails			Weathe	r data from	May-2022	to Januar	y-2023		
	RH (%)	Morning	94.6	93.4	92.1	91.9	94.8	94.6	93.6	94.3	-
		Evening	74.5	78.7	71.1	68.4	69.9	72.4	57.9	60.4	-
47	Umiam		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		25	24	19	17	20	9	2	1	0
	Rainfall (mm)		499.2	446.1	278.2	253.6	241.1	313.6	30.4	5	0
	Temp. (°C)	Maximum	25.2	26.4	28.9	28.9	27.7	26.1	25	22.1	21.3
		Minimum	17.6	19.7	20.8	20.8	19.5	16.2	11.4	8.4	6.6
	RH (%)	Morning	83.9	91.7	90	89.9	88.3	89.2	82.7	88.4	86.6
		Evening	85.8	90.1	86.3	85.4	88.3	80	62.5	67.2	60.5
48	Upper Shillong		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		19	23	20	16	20	11	-	-	-
	Rainfall (mm)		626	1129	189.8	212.8	220.6	281.8	-	-	-
	Temp. (°C)	Maximum	23.96	24.11	26.08	27.14	25.36	24.2	-	-	-
		Minimum	14.68	15.28	15.88	15.61	14.65	10	-	-	-
	RH (%)	Morning	97.97	98.87	98.01	98.48	98.73	78.71	-	-	-
		Evening	46.57	72.63	61.38	61.17	61.08	48.29	-	-	-
49	Varanasi		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	-	-	-	-	-	-	-	-
	Rainfall (mm)		-	347.2	410.8	297.4	227.4	27.4	0	0.2	-
	Temp. (°C)	Maximum	-	42.9	35.9	37.9	31.6	32	26.9	23.4	-
		Minimum	-	22.5	23.2	22.5	21.5	15.4	9	7.4	-
	RH (%)	Morning	-	86	89	91	92	94	95	94	-
		Evening	-	30	53	67	76	46	40	44	-
50	Wangbal		May	June	July	August	Sep	Oct	Nov	Dec	Jan
				We	eather data	not available	е				
51	Warangal		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	8	21	15	8	7	0	0	-
	Rainfall (mm)		-	186	444.8	397.3	184.8	93.6	0	0	-
	Temp. (°C)	Maximum	-	33	29.8	31.1	33	30.4	30.2	30.9	-
		Minimum	-	26.5	22.8	24.2	23.9	21.5	17.4	18.2	-
	RH (%)	Morning	-	73.4	91.6	88.8	92	91.2	86.2	87.4	-
		Evening	-	55.4	77.5	71.3	76.3	68.1	50.6	49.7	-

Annexure - II

Details on the locations where Coordinated Pathology Screening trials were conducted during, *Kharif* 2022-2023

C		T 414 T	I	Elevation		C	E422 D1	E415
S. No.	Location	Latitude (North)	Longitude (East)	(m. from MSL)	Ecosystem	Sowing (Year, 2022)	Fertilizer Basal - NPK (Kg/ha)	Fertilizer top dressing (Kg/ha)
1	Aduthurai	11° N	79°E	19.5 m	Irrigated	27-09-2022	37.5:50:25	112.5:0:25 (NPK)
2	Almora	29°36'N	79°40'E	1250 m	Upland	06-07-2022 LB 13-07-2022 BS	60:60:40 20:60:40	20 + 20 N (30 DAT & 60 DAT)
3	Bankura	23°24' N	87°05'E	84 m	Upland (Rainfed) Rainfed Shallow lowland Upland (Irrigated – Boro only)	18-07-2022 LB,BS,SHB,SHR	10:26:26 18Kg+SSP 9Kg+Urea 10Kg	1st top dressing at 21 DAT urea10Kg and 2nd top dressing at 42 DAT urea 10 Kg
4	Chatha	32°40'N	74°18'E	293 m	Irrigated	26-06-2022	40:60:30	40+40 N (1 st and 2 nd top dressing)
5	Chinsurah	22°52'N	88°24'E	8.62 m	Irrigated	27-06-2022	60:50:30	60
6	Chiplima	20°21'N	80°55'E	178.8 m	Irrigated	18-07-2022	120:40:40 60:40:20	30:0:20 NPK (tillering stage) 30:0:0 NPK (PI stage)
7	Coimbatore	11° N	77°E	409 m	Irrigated and Potted plants	17 & 18-11-2022 BL, 27-07-2022 ShB, ShR, BLB	-	Urea 25kg for entire uniform blast nursery bed; 10g/pot (RTD)
8	Cuttack	20°23'N	85°17'E	36 m	Irrigated Shallow lowland	24-06-2022 ShR 22-07-2022 BL & BLB 17-07-2022 ShB	100:40:40; 50 120 40	Twice @ 25 kg Nitrogen - 20N
9	Faizabad (Masodha)	26°47'N	82°47'E	113 m	Irrigated	26-06-2022	ShB- 120:60:60 BLB-150:60:60	ShB-60, BLB-75 N & 25 ZnSo ₄
10	Gangavati	15°43'N	76°53'E	406 m	Irrigated	11-10-2022 LB 11-10-2022 BS 07-07-2022 ShB & BLB	250:75:75-Blast, ShB & BLB 50:75:75- BS	-
11	Gerua	26°14'N	91°33'E	49 m	Rainfed lowland	-	-	-
12	Ghaghraghat	27°50'N	81°20'E	112m	Irrigated	21/7/2022	-	-
13	Gudalur	11°30'N	76°30'E	950 m	Irrigated	02-08-2022	-	Urea 15kg for entire uniform Blast nursery bed
14	Hazaribagh	23° 95'91'' N	85° 37'20'' E	614 m	Upland	-	-	-
15	IIRR	17°19'N	78°23'E	542m	Irrigated	13-06-2022	45:60:40	135N
	Imphal	24°45' N	93°54' E	774 m	Rainfed lowland			
17	Jagadalpur	19°05' N	81°57'E	556 m	Upland / Rainfed		60:60:60	30:30 (N:N)
18	Jagtial	18°831'N	78°96'E	264m	Irrigated	24-07-2022 BLB 12-11-2022 BL	120 Nitrogen 40	40+40
19	Karaikal	10°55' N	79°52'E	4	Irrigated	14-09-2022	150:50:50:25Zn 75:50:50:25Zn	75N
20	Karjat	18°55' N	73°15'E	51.7 m	Rainfed lowland	29-06-2022 BLB & ShR 27-07-2022 BL	-	70 N
21	Kaul	29°51'N	76°39'E	230.7 m	Irrigated	16-06-2022 BL 26-06-2022 SHB	50:0:60	100 N
22	Khudwani	33.73°N	75.15°E	1601 m	Irrigated	06-08-2022	60:60:30	60 N
23	Lonavala	18.9°N	73.5°E	622m	Rainfed lowland	25-07-2022 28-08-2022 in UBN	60:50:50	60 N
24	Ludhiana	30°90'N	75°85'E	262 m	Irrigated	21-06-2022	Urea 37kg / Acre	Urea 74kg / Acre
25	Malan	32°1'N	76°2'E	950 m	Upland	10-08-2022 BL	120:40:40	60 N

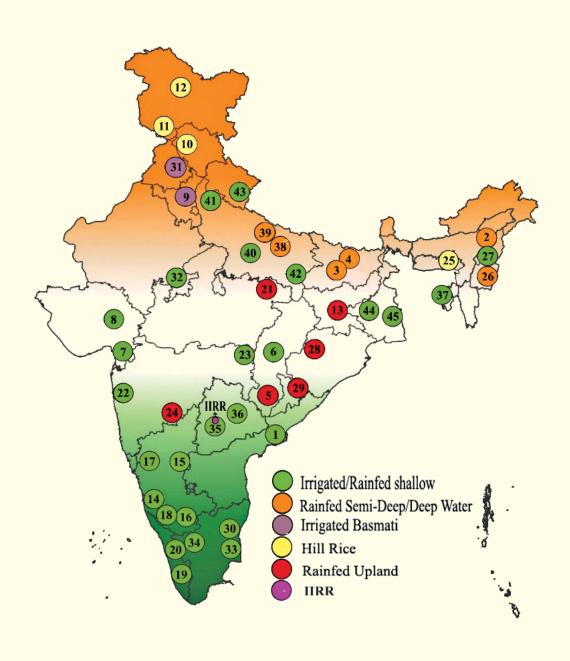
S. No.	Location	Latitude (North)	Longitude (East)	Elevation (m. from MSL)	Ecosystem	Sowing (Year, 2022)	Fertilizer Basal - NPK (Kg/ha)	Fertilizer top dressing (Kg/ha)
				•		20-06-2022 NB	60:40:40	
26	Mandya	12°36'N	76°15'E	694.65 m	Irrigated	28-10-2022 BL 09-09-2022 ShB 09-09-2022 NB	200:50:50 100:50:50	50:0:0 (15 DAT) 50:0:0 (30 DAT)
27	Maruteru	16°38'N	81°44'E	5m	Irrigated	01-07-2022	150:40:40 50:40:20	50:0:0 (NPK) 50:0:20
28	Moncompu	9 ⁰ 51'N	76°5'E	Below MSL	Irrigated	28-06-2022	90:45:45 Kg/ha 1/2N,1/3P&K	15DAP-1/4N, 1/3P&K, 40DAP-1/4N, 1/3P&K
29	Mugad	50°26'N	74°54'E	697m	Rainfed drill down lowland	22-06-2022	100:50:50 33:50:50	33 kg N/ha at 30 days after sowing and 33 kg N/ha at 60 days after sowing.
30	Navsari	20°57'N	72°52'E	10 m	Irrigated	16-07-2022	150:50:0 75:50:0	Remaining 75 N given in two splits at 30 days intervals.
31	Nawagam	22°48'N	71°38'E	32.4 m	Irrigated	20-07-2022	120:30:0 60 N + 30 P ₂ O ₅ .	60 N + 20 ZnSO ₄
32	Nellore	14°27'N	79°59'E	20 m	Upland/Irrigated	26-10-2022	15:60:40 75:60:20 20 kg/acre-Zn	37.5+ 37.5 0 20 (30DAT & 60DAT)
33	New Delhi	28° 08'N	77°12'E	216 m	Irrigated	20-06-2022 BLB 22-06-2022 ShB 03-08-2022 BL	60:60:40 20:60:40	20+20 N (30DAT & 60DAT)
34	Pantnagar	29°N	79º30'E	343.84 m	Irrigated	22-06-2022	60:60:40-25Kg (ZnSO4)	60N
35	Patna	25°13N	84°14E	77m	Irrigated	23-06-2022	120:60:40 NPK kg/ha	-
36	Pattambi	10°48'N	76°12'E	25.35 m	Upland Rainfed lowland	28-06-2022 BL 05-07-2022 ShB & BLB	120:30:30 80:30:15	40:0:15
37	Ponnampet	12°29'N	75°56'E	856 m	Rainfed lowland	12-09-2022 UBN 25-07-2022 Field		37.5:0:45
38	Pusa	25°98'N	85°67'E	51.8 m	Irrigated	22-06-2022	80:40:20	20+20 N
39	Raipur	21°16'N	81°36'E	681 m	Irrigated	07-02-2022	120 60	60N as a spray in two split doses
40	Rajendranagar	17º 19'N	78°23'E	542 m	Irrigated	08-11-2022 BL 15-07-2022 NB 01-07-2022 ShR	45:60:40 2.5 N for UBN	155 N (Kg/ha) in equal splits for 3 times & Remaining 2.5 kg of N was applied 15-20 DAS for UBN. Zn deficiency was noticed and sprayed ZnSo4 @ 2 g per liter.
41	Ranchi	23° 17'N	85° 19'E	625m	Upland	29-07-2022 (direct sown)	60:30:20 30:30:20	15+15 N
42	Rewa	24°30'N	81°15'E	360 m	Upland Irrigated	02-08-2022	80:60:40 60	-
43	Sabour	25°23'N	87°07'E	37.19 m	Rainfed lowland	27-06-2022	40:40:20	20+20 N
44	Titabar	26°35'N	92°10' E	99 m	Irrigated	30-06-2022	60:20:40 30:20:40	15+15 N
45	Umiam (Barapani)	25°68' N	91°93' E	1060m	Rainfed		-	-
46	Upper Shillong	25° 31'03" N	91° 47' 89" E	1708 m	Rainfed	19-07-2022	120:40:40 60:40:40	-
47	Varanasi	25º20' N	23°03'E°	75.7 m	Irrigated	23-06-2022	180:60:60 120:60:60	15+15 N
48	Wangbal	24°8'N	94'E	781 m	Rainfed lowland	25-07-2022	-	-
49	Warangal	18º01' N	79º60' E	9.4m	Irrigated	28-06-2022	18:60:40 30:60:40	50+50+50 N

Annexure – III (Abbreviations)

Name of the centre	Code	Details	Code
Aduthurai	ADT	(-)	Data not available
Almora	ALM	A	Artificial Inoculation
Arundhatinagar	ARD	AVTs	Advanced variety trails
Bankura	BAN	BB	Bacterial blight
Chatha	CHT	BS	Brown spot
Chinsurah	CHN	CV	Co-efficient of variation
Chiplima	CHP	DSN	Donor Screening Nursery
Coimbatore	CBT	FS	False Smut
Cuttack (NRRI)	CTK	GD	Glume discoloration
Gangavathi	GNV	GSN	Germplasm Screening Nursery
Gerua	GER	IC No.	Indigenous collection Number
Ghaghraghat	GGT	IET No.	Initial Evaluation Trail Number
Gudalur	GDL	IVTs	Initial variety trails
Hazaribagh	HZB	LB	Leaf blast
Imphal	IMP	LSD	Least significant difference
Indian Institute of Rice Research	IIRR	LSI	Location Severity Index
Jagadalpur	JDP	MSL	Mean sea level
Jagtial	JGT	N	Natural Infection
Karjat	KJT	NB	Neck blast
Kaul	KUL	NdB	Node blast
Kudhwani	KHD	NHSN	National Hybrid Screening Nursery
Lonavala	LNV	NSN-1	National Screening Nursery 1
Ludhiana	LDN	NSN -2	National Screening Nursery 2
Malan	MLN	NSN-H	National Screening Nursery- Hills
Mandya	MND	PI	Promising index
Maruteru	MTU	RTD	Rice Tungro Disease
Masodha (Faizabad)	MSD	RTV	Rice Tungro Virus
Moncompu	MNC	SE	Standard error
Mugad	MGD	ShB	Sheath blight
Navsari	NVS	ShR	Sheath rot
Nawagam	NWG	SI	Susceptibility Index
Nellore	NLR	StR	Stem rot
New Delhi (IARI)	NDL		
Pantnagar	PNT		
Patna	PTN		
Pattambi	PTB		
Ponnampet	PNP		
Pusa	PSA		
Raipur	RPR		
Rajendranagar	RNR		
Ranchi	RCI		
Rewa	REW		
Sabour	SBR		
Titabar	TTB		
Umiam (Barapani)	UMM		
Upper Shillong	USG		
Varanasi	VRN		
Wangbal	WBL		

Progress Report-2022 report was compiled by the following scientists of Department of Plant Pathology, ICAR-IIRR, Hyderabad.

Drs. M. Srinivas Prasad, G. S. Laha, D. Krishnaveni, C. Kannan, D. Ladhalakshmi, V. Prakasam, K. Basavaraj and G.S Jasudasu


Acknowledgement

Our thanks are due to the Scientists of all the Cooperating Research Centers for conduct of Plant Pathology Coordinated Trials and dispatch of the data.

Thanks, are also due to the Technical Staff of the Department of Plant Pathology, **Sri Y. Roseswar Rao** and **Mr. P. Chandrakanth** for their help in conduct of the coordinated trials at IIRR (ICAR-IIRR), Hyderabad. Thanks are due to **Mr. K. Sai Teja** and for his assistance during report preparation.

भाकृअनुप - भारतीय चावल अनुसंधान संस्थान भारतीय कृषि अनुसंधान परिषद

ICAR - Indian Institute of Rice Research

Indian Council of Agricultural Research Rajendranagar, Hyderabad - 500 030

